Wiimote Hacking

Wiiing up your Wiisome Wiimote
with some Wiitastic Wii Scripts.
Wii.

©2007 Computer Academic Underground



Anatomy of a Wiimote

Communication:
Broadcom 2042 Bluetooth controller chip
Acts as a Bluetooth HID device

Inputs
Buttons
Motion Sensor
Infrared (IR) Sensor

Outputs
Player LEDs
Rumble
Speaker

Memory
Flash Memory
Control Registers

Expansion Port
Batteries

© 2007 Computer Academic Underground



©2007 Computer Academic Underground



Wiimote Bluetooth HID

' Bluetooth HID is directly based on the USB
HID

~Queried with Bluetooth SDP, returns:
2 Name: Nintendo RVL-CNT-01
2Vendor ID: Ox057e
2! Product ID: 0x0306

~Max Report frequency of 100/sec

~Does not use any auth/security features of
Bluetooth HID standard

© 2007 Computer Academic Underground



Wiimote Peering

~Press and hold the “1" and “2" buttons
simultaneously or press the red “sync”
button under the battery cover

~'Query Wiimote via Bluetooth HID driver on
the host device

© 2007 Computer Academic Underground



Wiimote HID Interface

~~HID standard allows devices to be self-describing
using a HID descriptor block

~The HID descriptor block includes an enumeration
of available Reports

s Reports are like network ports assigned to a
particular service

< Reports are unidirectional

<~ Query using SDP to get descriptor block including
reports, direction, and payload size

© 2007 Computer Academic Underground



2= Output:

Wiimote HID Reports

7<'0x11 (1): Player LEDs, Force
Feedback

2+ 0x12 (2): Report type / ID

7N Ox13
75 0x14
2 0x15
75 0x16
25 0x17
725 0x18
7 0x19
72~ 0x1a

(1
(
(
(
(
(
(
(

1
1
2
§)
2
1
1

): Enable IR Sensor
): Enable Speaker

): Controller Status
1): Write data

): Read data

1): Speaker data

): Mute speaker

): IR Sensor Enable 2

' Input:

7+ 0x20 (6): Expansion Port
2+ 0x21 (21): Read data

25 0x22 (4): Write data

2 0x30 (2): Buttons only
25 0x31 (5), 0x33 (17):

7+ Buttons | Motion Sensing
Report

75 0x32 (16), 0x34 (21), 0x36 (21),
O0x3d (21):
2~ Buttons | Expansion Port | IR
25 0x35 (21), 0x37 (21):
Z¥ Buttons | Motion Sensing
Report | Expansion Port
75 0x38 (21), 0x3e (21), 0x3f (21):

Z< Buttons | Motion Sensing
Report | IR

© 2007 Computer Academic Underground



Inputs

©2007 Computer Academic Underground



Wiimote Buttons

-~ 12 buttons on the Wiimote:

Power button
' D-Pad: Up, Down, Left, Right
A and B buttons
< -, Home, and + buttons
2<'1 and 2 buttons
~ Button press or release generates Input Report
0x30 containing a 2-byte bitmask with current state

of all buttons

~'Button state mask is also included as first two
bytes of all other Input Reports

© 2007 Computer Academic Underground



Button Bitmask Values

2<0x0001: 2 button ~~'0Ox0100: Left button
2~0x0002: 1 button ~~ 0x0200: Right button
2~0x0004: B button ~~'0x0400: Down button
~<'0x0008: A button < 0x0800: Up button
~A0x0010: - button ~'0x1000: Plus button
2<'0x0020: Used with < 0x2000: Used with
Ox3e or Ox3f Ox3e or Ox3f
2~'0x0040: Used with 7~ 0x4000: Used with
Ox3e or Ox3f Ox3e or Ox3f

¥ 0x0080: Home button  Z?0x8000: Unknown

© 2007 Computer Academic Underground



Motion Sensor

Motion is sensed by an
Analog Devices ADXL330
3-axis linear accelerometer
located slightly left of the A
button

Measures acceleration
over a range of +/- 3g with
10% sensitivity

Forces on each axis are
digitized into 8-bit
unsigned integers, with the
zero scale set to 0x80

© 2007 Computer Academic Underground



Motion Sensor Reports

~ Wiimote does not normally report motion sensor data, but
can be requested by sending a SET_REPORT request to
channel 0x12:

(a1) 12 00 31

~'Wiimote will now send motion sensor reports to channel

Ox31 at a fregency determined by parameters to the above
SET REPORT request:
“ (a1) 31 40 20 86 8a a5
Bytes 1 and 2 are the buttons bitmask
Bytes 3, 4, and 5 are X, Y, and Z axis measurements, respectively

7x' Other channels that can be used for motion sensor reports
iInclude 0x33, 0x35, 0x37, 0x3e and Ox3f

'~ 0x3e and 0x3f have special properties and extra bytes
which may contain IR data

< Reports can be stopped setting the channel to 0x30

© 2007 Computer Academic Underground



Motion Sensor Calibration

2~ Zero pomts and gravity values for the three axes
are stored in the Wiimote’'s flash memory, starting
at address Ox16

2+'|s repeated at address 0x20:

2¢ 0x16: zero point for X axis

22 0x17: zero point for Y axis

2~ 0x18: zero point for Z axis

25 0x19: unknown

2¢ 0x1a: +1G point for X axis

Z2J 0x1b: +1G point for Y axis

2¢ 0x1c: +1G point for Z axis

2~ 0x1d: unknown

25 0x1e - Ox1f: possible checksum

© 2007 Computer Academic Underground



IR Sensor

PixArt IR sensor located at the front of the Wiimote
housing

'Possibly a PixArt “System on a Chip” product

'Locates 2 IR beacons within the IR sensor’s field
of view

' Can detect and transmit up to 4 IR hotspots back
to the host

~~'\V/arious data sets can be requested, including:

Only position values
Position and size
Position, size, and pixel values

© 2007 Computer Academic Underground



IR Sensor Reports

~|R Sensor reports 3 bytes of data per dot
recognized

“Bytes 0 and 1 are X and Y positions

“Byte 2 is the MSBs of X and Y and a size
value:

25 X000000XK YYYYYYYY YYXXSSSS

© 2007 Computer Academic Underground



©2007 Computer Academic Underground



Player LEDs

4 blue LEDs

Used during play to indicate the player number of
the controller

All 4 blink when in Bluetooth discovery mode

Independently controllable via Output Report to
channel Ox11 containing LED bitmask:
(52) 11 10

‘Most-significant 4 bits control each LED

‘Updating the LED bitmask rapidly (>1 times per
second) causes all 4 LEDs to blink as if in
discovery mode, then returns to last known
bitmask

© 2007 Computer Academic Underground



Force Eeedback (Rumble)

~Rumble Is achieved via a motor with an
unbalanced weight

~Can be activated by sending an Output
Report to channels 0x11, 0x13, 0x14,
0x15, 0x19 or Ox1a with the LSB set:
©(52) 13 01

~Can be disabled by clearing the LSB:
#(52) 13 00

© 2007 Computer Academic Underground



Speaker

Small, low-quality internal speaker

Used primarily for short sound effects during gameplay
‘Sound is streamed directly from the host

'~ Speaker has adjustable parameters

< Controlled via 3 Output Reports together with a section of
the register address space

< Report 0x14 is used to enable or disable the speaker by
setting or clearing bit 2 of the payload:

Enable: (52) 14 04
Disable: (52) 14 00

< Report 0x19 is used to mute or un-mute the speaker, used
exactly like 0x14

© 2007 Computer Academic Underground



Speaker Initialization

2= To Initialize the speaker:
= Enable speaker: Output Report 0x14 of value 0x04
= Mute speaker: Output Report 0x19 of value 0x04
=  Write Ox0O1 to register 0x04a20009
=  Write Ox08 to register 0x04a20001

= Write 7-byte configuration to registers 0x04a20001 -
0x04a20008

= Write Ox01 to register 04220008
=  Unmute speaker: Output Report 0x19 value 0x00

© 2007 Computer Academic Underground



Speaker Configuration

[ bytes control all speaker settings:
24 0x00: unknown
22 0x01: unknown
21 0x02: unknown

2 0x03: Sample rate divisor, based on a start rate of
approximately 48000Hz

22 0x04: Volume control
21 0x05: unknown
22 0x06: unknown

© 2007 Computer Academic Underground



Sample Rates and'Volume

~Known sample rate values:
1 0x0b: 4000/4364Hz (~4200Hz)
210x0c: 3692/4000Hz (~3920Hz)
710x0d: 3429/3692Hz (~3640Hz)
% 0x0e: 3200/3429Hz (~3360Hz)
% 0x0f: 3000/3200Hz (~3080Hz)

~~Volume:
2% Any value from 0x00 to Oxff works
2 0x40 seems to be generally accepted good default

© 2007 Computer Academic Underground



Speaker Data

Report 0x18 Is used to send speaker data
Up to 20 bytes may be sent at once

‘Byte 1 of the payload indicates the length of data,
shifted left by 3 bits

< Data must be padded if it is less than the indicated
length

~'Sound data must be sampled at roughly the
proper rate

~'Rate can be set during speaker initialization
~'Format appears to be 4-bit ADPCM sound

© 2007 Computer Academic Underground



viemory

©2007 Computer Academic Underground



Flash Memory

- Persistent RAM
+©5.5K of RAM
“Memory Addresses 0x0000 - Ox15ff

“Control Registers begin with 0x04 and are
4 byte addresses (0x04a10000)

~“Addresses wrap after Oxffff

© 2007 Computer Academic Underground



Flash Memory Addresses

2= 2-byte Addresses (0x010000 == 0x0000)

22'0x16 and 0x20: Calibrated zero offsets for
accelerometer

220x0040 - Ox0fc9: All zeroes on new Wiimote
2<'0Ox0fca - 0x12b9: Mii data block 1

AN 0) ¢
N 0)¢
20X

2ba - 0x15a9: Mii data block 2
5aa - 0x15ff: All zeroes on new Wiimote
600 - Oxffff: Don’t exist, return error on read

2¢0x010000 - OxFFO00O0 used for control registers

© 2007 Computer Academic Underground



Control Registers

2 Bit 2 must be set in first byte of address

~“Bit 1 is the rumble flag and not considered
part of the address (0x05a20000 ==
0x04a20000)

~0Only 0x04a20000 - 0x04a30000 are
readable

© 2007 Computer Academic Underground



Control ' Register Addresses

72 0x04000000 - Ox04offfff: returns error 7 on read
2¢0x04a00000 - Ox04a1ffff: doesn't exist
25 0x04a20000 - 0x04a30000: speaker

22 0x04b00000 - OxO4 bfffff: returns error 7 on read

25/ 0x04b00000 - 0x04b00008: IR sensitivity settings
25 0x04b0001a - 0x04b0001b: IR sensitivity settings
25 0x04b00030: IR toggle
25 0x04b00033: IR mode

2<¢0x04c00000 - OxO4ffffff: returns error 7 on read

© 2007 Computer Academic Underground



Reading Memory

2 Output Report 0x17 reads memory:
24(592) 17 XX XX XX XX YY YY
24 XX XX XX XX is big-endian formatted address
2*YY YY is big-endian formatted size in bytes

2~ LSB of first byte is rumble flag and is not part of address, should
be set to whatever state the rumble should be

% Responses look like:
~ SE XX XX data.
E:(al) 21 80 00 £0 11 £0 80 6c 8c ..
25 S shifted right 4 bits is size in bytes, minus 1, of current packet

7~ E is error flag:
’<' 8 if reading from bytes that don’t exist
< 7 if reading from write-only registers
25 0 if no error
25 XX XX is offset of current packet in big-endian format

2~ Rest is data, 16 bytes maximum

© 2007 Computer Academic Underground



Writing Memory

Output Report 0x16 writes memory

XX XX XX XX SS data.
(52) 16 00 00 00 OO0 10 57 69 69 ...
5 XX XX XX XX is the address being written to
<' SS is the size in bytes
Up to 16 bytes of data, padded

-~ Write acknowledgement is sent on Input Report 0x22

~0x04 as first byte of payload indicates write to control
register address

< Bit O of first byte of payload sets rumble feature

~'Second byte of payload is ignored unless writing to control
reqgister

© 2007 Computer Academic Underground



ansion Port

©2007 Computer Academic Underground



Expansion Port

‘Located on the bottom of the Wiimote

‘Used to connect auxiliary controllers which
augment the input options of the Wiimote

2~ Custom connector with 6 contacts

2 of the contacts are longer and make contact first when the
plug is inserted

~'Communicates with the Wiimote via a 400kHz
‘fast” 12C, slave address 0x52

s~ Avallable expansions include:

Nunchuk controller
Classic controller

© 2007 Computer Academic Underground



Expansion Port Reports
2 0x20: Expansion port status

2+ Sent whenever status changes
Z¢ Can be requested with Output Report 0x15

7N bu bu ss uu uu bl
2 (al) 20 00 00 02 00 00 cO
Zx bu contains the button state bitmask
7x'ss contains the Expansion Port status bitmask
25 Bit 0 is unknown
25 Bit 1 indicates whether or not an attachment is plugged in
Zs Bit 2 indicates whether the speaker is enabled
75 Bit 3 indicates whether the IR sensor is enabled
7< Bits 4 - 8 indicate the status of the 4 LEDs
75 uu contains some unknown bytes

7~ bl contains the battery level

© 2007 Computer Academic Underground



©2007 Computer Academic Underground



Batteries

<2 AA size batteries

“Expansion kits containing rechargeable
Lithium-lon batteries and a charging
station have hit the market

© 2007 Computer Academic Underground



Battery Reports
~'0x20: Read battery charge level

2 Sent when something is plugged into or unplugged from
the expansion port
“¢ Can be requested with Output Report 0x15

7N bu bu ss uu uu bl

s (al) 20 00 00 02 00 00 cO
2~ bl contains the battery level
Z¢Values as high as Oxc6 have been found

7+ Suggests that a “fully charged” value may be 0xc8 (200 in
decimal)

© 2007 Computer Academic Underground



©2007 Computer Academic Underground



Expansion Devices

~Use address space 0x04a40000 -
0x04a400ff

~Must be initialized by writing value 0x00 to
address 0x04a40040

~Byte 3 of address space appears to be
ignored (0x04a4ff00 == 0x04a40000)

~Data is “encrypted” via simple XOR
Decrypt: value = (byte * 0x17) + Ox17

© 2007 Computer Academic Underground



Expansion Device Addresses
410x04240008 - 0x04a4000d:

2 6-byte current state of device

220x04a40020 - 0x04a4002f:

2 Calibration data

“0x04a40030 - 0x04a4003f:
2 Repeat of data at 0x04a40020

20x04a400f0 - 0x04a400ff:

2 Same on all similar devices, possible device Type ID

© 2007 Computer Academic Underground



Expansion Device Reports

“Device must be initialized first

~Reports 0x32, 0x34, 0x35, 0x36, Ox37 and
Ox3d will contain the 6-byte device status

~Data must be “decrypted”

“Can also retrieve these bytes by reading
16 bytes starting at address 0x04a40000

Device status will be at offset 0x08-0x0d

Different data is returned if you try to read directly from
0x04a40008, so don't try.

© 2007 Computer Academic Underground



Nunchuk Controller State

“'6-byte current state of device:
21 0x00: X-axis value of analog stick
2~ 0x01: Y-axis value of analog stick
' 0x02: Accelerometer X-axis acceleration value
 0x03: Accelerometer Y-axis acceleration value
21 0x04: Accelerometer Z-axis acceleration value

2 0x05: Button state bitmask:
2 Bit 0: Z button
2 Bit 1: C button
©Bits 2-3: LSBs from X-axis accelerometer
~Bits 4-5: LSBs from Y-axis accelerometer
7 Bits 6-7: LSBs from Z-axis accelerometer

© 2007 Computer Academic Underground



Classic Controller State

~-6-byte current state of device:

Z< 0x00: X-axis value of both analog sticks:

< Bits 0-5: X-axis of left analog stick

21 Bits 6-7: Bits 3-4 of X-axis of right analog stick
2< 0x01: Y-axis value of left analog stick:

2 Bits 0-5: Y-axis of left analog stick

Z<Bits 6-7: Bits 1-2 of X-axis of right analog stick
7 0x02: Y-axis value of right analog stick / Left shoulder button

Z¢Bits 0-4: Y-axis of right analog stick

2< Bits 5-6: Bits 3-4 of left shoulder button

< Bit 7: Bit 0 of X-axis of right analog stick
25/ 0x03: Left / Right shoulder buttons

Z¢ Bits 0-4: Right shoulder button

2¢ Bits 5-7: Bits 0-2 of left shoulder button

© 2007 Computer Academic Underground



Classic Controller State

/6-byte current state of device (continued)

' Ox04: Button state bitmask 1:
2+ Bit 0: unused
2+ Bit 1: R button fully pressed
2+ Bit 2: + button
2+ Bit 3: Home button
7+ Bit 4: - button
7 Bit 5: L button fully pressed
< Bit 6: Down button
7+ Bit 7: Right button

7~ 0x05: Button state bitmask 2:

< Bit 0: Up button

7 Bit 1: Left button

7 Bit 2: ZR button

7 Bit 3: x button

75 Bit 4: a button

75 Bit 5: y button

75 Bit 6: b button

75 Bit 7: ZL button

I
A © 2007 Computer Academic Underground



GlovePIE

Or, why you didn’t need to know
any of that lower-level stuff...

©2007 Computer Academic Underground



What is GlovePIE?

'Glove Programmable Input Emulator
'Originally designed for VR gloves

~~Emulates joystick and keyboard input when input
IS received from other devices

< Supports the Wiimote as an input device!

<~ Can use it to map Wiimote inputs to a game’s

standard controls
Now you can play WoW with your Wiimote!!!

~ Abstracts away all that lower-layer stuff into a nice
object-oriented scripting language

~Does not work with Microsoft's Bluetooth stack

© 2007 Computer Academic Underground



GlovePIE Scripts

GlovePIE creates objects for the hardware
It supports

~Available Wiimote objects of course have
methods which implement much of that
lower-layer bit and byte necromancy for
you

“Supports variables, flow control,
conditionals, etc.

“Best shown by example...

© 2007 Computer Academic Underground



Example #1: NES Emulator

A = Wiimote.Two //A button "Two" Button

B = Wiimote.One //B button "One" Button

S = Wiimote.Plus //Start "Plus" Button

F = Wiimote.Minus //Select "Minus" Button
Left = Wiimote.Up //Up is "D pad Left"
Right = Wiimote.Down //Down is "D pad Right"
Down = Wiimote.Left //Left is "D pad Down"

Up = Wiimote.Right //Right is "D pad Up"

D = Wiimote.Home //Left Shoulder is "Home"
N = Wiimote.B //Right Shoulder is "B"

I
A © 2007 Computer Academic Underground



Example #z

L S rresp
Right = 1 > Wiimotel.Nunchuk.JoyX > 0.5
1 < Wiimotel.Nunchuk.JoyX <
down = 1 > Wiimotel.Nunchuk.JoyY > 0.5
up = -1 < Wiimotel.Nunchuk.JoyY < -0.5

// Bind some keys to the mote, you can bind your own.
h = Wiimote.Plus
g = Wiimote.Minus

tab = Wiimote.Home

J = Wiimote.One

k = Wiimote.Two

// Nunchuck

u = Wiimote.Nunchuk.CButton

f = Wiimote.Nunchuk.ZButton

// B for left click and A for right click
mouse.LeftButton = Wiimote.B
mouse.RightButton = Wiimote.A

Z |
© 2007 Computer Academic Underground




Keyboard (also,

VWiimote

Z |
© 2007 Computer Academic Underground



Keyboard Methods

“'Most “keys™ will work:
“'Up, Down, Left, Right, w, a, s, d, Enter, Space, etc.

I
A © 2007 Computer Academic Underground



Wiimote NMethods

~ Buttons:
“'Up, Down, Left, Right, A, B, Plus, Minus, Home, One,
Two

2LEDs:

2 Toggles:
#LED1, LED2, LED3, LED4

7 Bitmask: LEDs

~Rumble:
“Rumble (Boolean, set to 0 or 1)

© 2007 Computer Academic Underground



DemoSs

©2007 Computer Academic Underground



No demo necessary, |'ve been
using it this entire time...

©2007 Computer Academic Underground



[ -

EFverybody loves blinky LEDs

©2007 Computer Academic Underground



This one’s for the ladies...

©2007 Computer Academic Underground



References

~Wii Linux Project Wiimote Page
2 http://www.wiili.org/index.php/Wiimote

“GlovePIE

4 http://carl.kenner.googlepages.com/glovepie

© 2007 Computer Academic Underground



