
Real-time Steganography
with RTP

September, 2007

I)ruid, C2ISSP
<druid@caughq.org>

http://druid.caughq.org

Abstract

Real-time Transfer Protocol is used almost ubiquitously by Voice-over-IP systems
to provide the audio channel for calls. As such, it provides ample opportunity
for creation of a covert communications channel due to it’s very nature and use
in implementation. While use of steganographic techniques with various audio
cover-medium has been extensively researched, most applications of such have been
limited to audio cover-medium of a static nature such as WAV or MP3 file audio
data. This paper details a common technique for use of steganography with audio
data cover-medium, outlines the problem issues that arise when attempting to use
such techniques to establish a full-duplex communications channel within audio data
transmitted via an unreliable streaming protocol, and finally documents solutions
to these problems as well as a reference implementation entitled SteganRTP.

Contents

1 Introduction 5
1.1 Overview . 5
1.2 Voice over IP . 5
1.3 Real-time Transport Protocol . 6
1.4 Steganography . 6

1.4.1 Terminology . 7
1.4.2 Digitally Embedding . 7

1.5 Steganography With Audio . 7
1.5.1 Previous Research . 8

2 Real-time Steganography 10
2.1 Context Terminology . 10
2.2 RTP Payload Redundant Bits . 11

2.2.1 Audio Word Size . 11
2.2.2 Common VoIP Audio Codecs 11
2.2.3 G.711 (alaw/ulaw) . 12

2.3 Identified Problems and Challenges 13
2.3.1 Unreliable Transport . 13
2.3.2 Cover-Medium Size Limitations 13
2.3.3 Latency . 13
2.3.4 Tracking of RTP Streams 14
2.3.5 Raw vs. Compressed Audio 14
2.3.6 Media Gateway Audio Modifications 14
2.3.7 Mid-session Audio Codec Change 15

3 Reference Implementation: SteganRTP 17
3.1 Design Goals . 17

3.1.1 Achieve Steganography . 17
3.1.2 Full-Duplex Communications Channel 17
3.1.3 Compensate for Unreliable Transport 18
3.1.4 Identical User Experience Regardless of Mode of Operation . 18
3.1.5 Multi-type Data Transfer 18

3.2 Operational Architecture . 18
3.2.1 Local Operation . 19

1

3.2.2 Man-in-the-Middle Operation 19
3.2.3 Mixed Operation . 20

3.3 Application Flow . 21
3.3.1 Initialization . 22
3.3.2 RTP Session Identification 23
3.3.3 Hooking Packets . 23
3.3.4 Reading Packets . 24
3.3.5 Inbound Processing . 24
3.3.6 Outbound Processing . 25
3.3.7 Session Timeout . 25

3.4 Communication Protocol Specification 26
3.4.1 The cover medium: RTP Packet 26
3.4.2 Message Format . 27
3.4.3 Message Types . 28

3.5 Functional Components . 33
3.5.1 File Descriptor Lists . 33
3.5.2 Message Handler . 35
3.5.3 Encryption System . 36
3.5.4 Embedding System . 37
3.5.5 Extraction System . 38
3.5.6 Outbound Data Polling System 39
3.5.7 Message Caching System 39
3.5.8 Shell Service . 39

3.6 Use . 40
3.6.1 Command-line . 40
3.6.2 User Interface . 42

4 Solutions to Problems and Challenges 44
4.1 Unreliable Transport . 44
4.2 Cover-Medium Size Limitations . 45
4.3 Latency . 45

4.3.1 Inbound Packet Processing 45
4.3.2 Outbound Packet Processing 45
4.3.3 Encryption Overhead . 45

4.4 Tracking of RTP Streams . 46
4.5 Media Gateway Audio Modifications 46

4.5.1 Audio Codec Conversion 46
4.6 Mid-session Audio Codec Change 46

5 Conclusion 47
5.1 Design Goals . 47
5.2 Identified Challenges . 47
5.3 Secure Real-time Transfer Protocol 47
5.4 Future Research . 48

2

List of Figures

3.1 SteganRTP running locally. 19
3.2 SteganRTP running as an active man-in-the-middle. 20
3.3 SteganRTP running locally on one endpoint host and as an active

man-in-the-middle on the other. 20
3.4 SteganRTP application process flowchart. 21
3.5 NetFilter hook points. 24
3.6 RTP packet header, from RFC-1889. 26
3.7 SteganRTP message format. 27
3.8 SteganRTP control message format. 28
3.9 SteganRTP Echo Request control message. 29
3.10 SteganRTP Resend control message. 30
3.11 SteganRTP Start File control message. 30
3.12 SteganRTP End File control message. 31
3.13 SteganRTP Chat Data Message. 31
3.14 SteganRTP File Data Message. 32
3.15 SteganRTP Shell Data Message. 32
3.16 C structure for File Descriptor List elements. 33

3

List of Tables

2.1 Common VoIP Audio Codecs . 12

3.1 SteganRTP Message Types . 28
3.2 SteganRTP Control Message Types 29

4

Chapter 1

Introduction

This paper describes a research effort within the disciplines of steganography, Inter-
net telephony, and data communications.

1.1 Overview

This paper is structured in the following order: The first chapter provides an intro-
duction, describes the motivation for this research, and covers some basic concepts
and terminology for the subjects of Voice over IP (VoIP), Real-time Transport Pro-
tocol (RTP), Steganography, and more specifically the use of steganography with an
audio cover-medium. The second chapter defines the concept of real-time steganog-
raphy, discusses using steganography with RTP, and describes identified problems
and challenges in doing so. The third chapter details the reference implementation
entitled SteganRTP, the project’s goals, the implementation’s operational architec-
ture, process flow, message data structure, and functional sub-systems. The fourth
chapter will address the identified problems and challenges that were met and de-
scribe how they were solved. The fifth and final chapter with conclude the paper
with observations arising from this research effort.

1.2 Voice over IP

The term Voice over IP (VoIP) is nearly synonymous with Internet Telephony. The
majority of VoIP systems are designed to utilize separate signaling and media chan-
nels to provide calling services to users. The signaling channel is generally used to
set-up, manage, and tear-down calls between two or more parties whereas the media
channel is used to transmit the audio, video, or other media that may be associ-

5

ated with the call. A number of competing protocol standards exist for use as the
VoIP system’s signaling channel which include Session Initiation Protocol[1] (SIP),
H.323[2], Skinny[3], and many others. Real-time Transport Protocol[4] (RTP),
however, is used almost ubiquitously to provide VoIP systems with the required
media channel.

1.3 Real-time Transport Protocol

Real-time Transport Protocol[4] (RTP) is described by the protocol authors as ”a
transport protocol for real-time applications.” RTP provides an end-to-end network
transport suitable for applications transmitting real-time data such as audio, video
or any other type of streamed data. RTP generally utilizes the User Datagram
Protocol[5] (UDP) for it’s transport and can do so in both multicast or unicast net-
work environments. When employed by a VoIP system, RTP generally handles the
media channel of a call. The call’s media channel is usually handled independently
of the VoIP signaling channel by RTP, however per the RTP specification there are
no default network ports defined. As such, the RTP endpoint network ports must
be negotiated between the endpoints via the signaling channel. Other events in the
signaling channel may also influence the operation of the media channel as handled
by RTP, such as requests to change audio encoding, add or remove parties from
the call, or tear down the call.

One of the current deficiencies of RTP is that it is entirely in the clear while travers-
ing the network. An RTP profile has been defined for encrypting parts of the RTP
data packet called Secure Real-time Transport Protocol[6] (SRTP), however the
specification defines no mechanism for negotiating or securely exchanging keying
information to be used for the encryption and decryption processes. At the time
of this writing, a number of keying mechanisms have been defined but no standard
has either been agreed upon by the standards bodies or determined by the free
market. As such, most implementations of RTP do not currently use the SRTP
profile and instead continue to transmit call media data in the clear. As will be
detailed in full in Section 3.2, this property of the media channel provides ample
opportunity for multiple types of operational scenarios where unknown third-parties
to the legitimate call parties may be hijacking all or part of the call’s media traffic
for transmission of covert communications. Making use of this blatantly insecure
property of RTP is the primary motivation for this research effort.

1.4 Steganography

The term steganography originates from the Greek root words ”steganos” and
”graphein” which literally mean ”covered writing”. As a sub-discipline of the aca-
demic discipline of information hiding, the primary goal of steganography is to hide

6

the fact that communication is taking place[7, 8, 9] by concealing a message within
a cover-medium in such a way that an observer can not discern the presence of the
hidden message.

Conversely, steganalysis is the act of attempting to detect a concealed message
which was hidden via the use of steganographic techniques[8], thus denying the
steganographer achievement of their primary goal. Common steganalysis techniques
include statistical analysis of the properties of potential stego-medium, statistical
analysis of extracted potential message data for properties of language, and many
others such as specific techniques that target known steganographic embedding
methods.

1.4.1 Terminology

The following terminology as used in the discipline of steganography and steganalysis
has been set forth over many years of compounding research[7, 9, 8]. As such, the
following terminology will be used consistently within this research paper:

1. Cover-medium - Data within which a message is to be hidden.

2. Stego-medium - Data within which a message has been hidden.

3. Message - Data that is or will be hidden within a stego-medium or cover-
medium, respectively.

4. Redundant Bits - Bits of data in a cover-medium that can be modified without
compromising that medium’s integrity.

1.4.2 Digitally Embedding

Digitally embedding a message into a cover-medium usually involves three basic
steps. First, the redundant bits of the target cover-medium must be identified.
Second, it must be decided which of the identified redundant bits are to be utilized.
Finally, the bits selected for use must be modified to store the message data. In
many cases, a cover-medium’s redundant bits are likely to be the least-significant
bit or bits of each of the encoded data’s word values.

1.5 Steganography With Audio

Media formats in general, and audio formats specifically, tend to be very inaccurate
data formats simply because they do not need to be accurate; the human ear is
not very adept at differentiating sounds. As an example, an orchestra performance

7

which is recorded with two separate recording devices will produce vastly different
recordings when viewed digitally, but will generally sound the same when played
back if they were recorded in a similar manner. Due to this inherent inaccuracy,
changes to an audio bit-stream can be made so slightly that when played back the
human ear won’t be able to distinguish the difference between the cover-medium
audio and the stego-medium audio.

With many audio formats, the least-significant bit from each audio sample can
be used as the medium’s redundant bits for the embedding of message data. To
illustrate, assume that an audio file encoded with an 8-bit sample encoding has the
following 8 bytes of data in it, which will be used as cover-data:

0xb4 0xe5 0x8b 0xac 0xd1 0x97 0x15 0x68

In binary this would result in the following bit-stream:

10110100 11100101 10001011 10101100 11010001 10010111 00010101 01101000

In order to hide the message byte value 0xd6, or 11010110 in binary, each sample
word’s least-significant bit would be modified to represent all 8 bits of the message
byte:

10110101 11100101 10001010 10101101 11010000 10010111 00010101 01101000

The modifications result in the following 8 bytes of stego-data:

0xb5 0xe5 0x8a 0xad 0xd0 0x97 0x15 0x68

When compared to the original 8 bytes of cover-data, it is noticeable that on average
only half of the bytes of data have actually changed value, however the resulting
stego-data’s least-significant bits contain the entire message byte. It is also notice-
able that when utilizing this embedding method with a cover-medium with these
word size properties, the cover-medium must be at least eight times the size of the
message in order to successfully embed the entire message.

1.5.1 Previous Research

Audio Steganography

Much research has been done in the field of steganography utilizing an audio cover-
medium. Techniques such as using audio to convey messages in both the human
audible and inaudible spectrum as well as various methods for the digital embed-
ding of information into the audio data itself have all been explored; so much in
fact, that many methods are now considered standard. Many of the most recent
implementations cannot be considered to advance the state of research in the area
as they generally only implement the standard methods.

8

It is important to note that the significant majority of previous research in the sub-
discipline of audio steganography, however, has focused on static, unchanging audio
data files. Tools such as S-Tools[10], MP3Stego[11], Hide 4 PGP[12], and many
others, are just such implementations, employing standard embedding methods with
WAV, MP3, and VOC audio file cover-mediums, respectively. Very few practical
implementations have been developed that utilize audio steganography with a cover-
medium that is in a flux state or within streaming or real-time media sessions.

VoIP Steganography

A few previous research efforts have been made to employ steganography with var-
ious VoIP technologies. A complete analysis of such efforts identified prior to em-
barking upon the research presented in this paper has previously been provided[13].
In summary, most identified research efforts were utilizing steganographic tech-
niques but not achieving the primary goal of steganography or otherwise employing
steganographic techniques to accomplish an otherwise overt goal.

9

Chapter 2

Real-time Steganography

This paper defines ”real-time” use of steganography as the utilization of stegano-
graphic techniques to embed message data within an active, or real-time, com-
munications channel. The research and reference implementation presented herein
focuses on VoIP call audio as the active communications channel being targeted as
cover-medium.

Nearly all uses of steganography targeting audio cover-medium in general, or VoIP
cover-medium specifically, that were evaluated prior to performing this research
were found to operate on a target cover-medium as a storage channel and provided
separate ”hide” and ”retrieve” modes. In addition, most cover-medium that were
targeted by such implementations were of a static nature such as WAV or MP3 files
or were unidirectional such as streaming stego-audio to a recipient.

A few weeks prior to the research contained herein being initially presented[14] at
the DEFCON 15[15] hacker conference on August 3rd through 5th 2007, another
use of steganography in a real-time fashion was made public via a research effort
entitled Vo2IP[16]. An analysis of this research effort and it’s deficiencies has been
included in an updated version of the previously mentioned analysis paper[13].

2.1 Context Terminology

The disciplines of steganography and data networking share some common terminol-
ogy which have different meanings relative to each discipline. This paper discusses
research that lies within the realm of both disciplines, and as such will use terms that
may be confusing when taken out of context. The following terms are defined here
and used consistently without to prevent confusion when interpreting the content
of this paper.

10

1. Packet - Used in the data networking sense; A data packet which is routed
through a network, such as an IP/UDP/RTP packet.

2. Message - Used in the steganography sense; Data to be hidden or retrieved.

2.2 RTP Payload Redundant Bits

RTP packet payloads are essentially encoded multimedia data. RTP payloads may
contain any type of multimedia data, however this research effort focused entirely
on audio, specifically audio encoded with the G.711[17] Codec. Any number of
audio Codecs can be used to encode the RTP payload, the identifier of which is
included in the RTP packet’s header as the payload type (PT) field.

The frequency, locations, and number of redundant bits found within the RTP
packet’s encoded payload are determined by whichever Codec is used to encode
the audio transmitted by that individual packet. The Codec focused on during
this research, G.711, uses a 1-byte sample encoding and is generally resilient to
modifications to the least significant bit[18] (LSB) of each sample. Codecs with
larger samples may provide for one or more bits per sample to be modified without
any discernible audible change in the encoded audio, which is defined as the audio’s
audible integrity.

2.2.1 Audio Word Size

The data value word size, or sample size in audio terminology, used by various audio
encoding formats is one factor in determining the amount of available space within
the cover-medium for embedding a message. Generally only the least significant
bit of each word value can be expected to be modifiable without any perceptible
impact to audible integrity. Thus, only half the amount of available space in an
audio cover-medium encoded in a format with a 16-bit word size will be available
in comparison with a cover-medium with an 8-bit word size.

2.2.2 Common VoIP Audio Codecs

For reference, some common VoIP audio Codecs and their encoding and sample
properties[19] are listed in Table 2.1 below.

11

Table 2.1: Common VoIP Audio Codecs
Codec Standard Bit Rate Sample Rate FrameSize

by (kb/s) (kHz) (ms)
G.711 ITU-T 64 8 Sampling
G.721 ITU-T 32 8 Sampling
G.722 ITU-T 64 16 Sampling
G.722.1 ITU-T 24/32 16 20
G.723 ITU-T 24/40 8 Sampling
G.723.1 ITU-T 5.6/6.3 8 30
G.726 ITU-T 16/24/32/40 8 Sampling
G.727 ITU-T variable Sampling
G.728 ITU-T 16 8 2.5
G.729 ITU-T 8 8 10
GSM 06.10 ETSI 13 8 22.5
LPC10 U.S. Gov 2.4 8 22.5
Speex (NB) 8, 16, 32 2.15 - 24.6 30
Speex (WB) 8, 16, 32 4 - 44.2 34
iLBC 8 13.3 30
DoD CELP U.S. DoD 4.8 30
EVRC 3GPP2 9.6/4.8/1.2 8 20
DVI IMA 32 Variable Sampling
L16 128 Variable Sampling

2.2.3 G.711 (alaw/ulaw)

The G.711 audio Codec is a fairly straight-forward sample-based encoding. It en-
codes audio as a linear grouping of 8-bit audio samples arranged in the order in
which they were sampled.

Throughput

Utilizing the LSB of every sample in a G.711 encoded RTP payload, commonly of
160 bytes in size, a total of 20 bytes of message data can be successfully embedded.
Given an average of 50 packets per second unidirectional, this results in approxi-
mately 1,000 bytes of full-duplex throughput of message data within the established
covert channel.

12

2.3 Identified Problems and Challenges

Many problems and challenges that arise when considering use of steganography
with RTP stem from properties of the underlying transport mechanism, the nature
of real-time audio, or the RTP protocol itself. The following sections outline various
problems and challenges that were identified when attempting to use steganography
with RTP.

2.3.1 Unreliable Transport

One of the most significant challenges to utilizing RTP packet payloads as cover-
medium is that RTP generally employs UDP as it’s underlying transport protocol.
This is appropriate for a streaming multimedia protocol, however it is less than
ideal for a reliable covert communications channel. UDP is a datagram messaging
protocol which is considered connectionless and unreliable[5]. As such, each packet’s
successful delivery and order of arrival is not guaranteed. Any message data which
is split across multiple RTP cover-packets may arrive out of order or not arrive at
all.

2.3.2 Cover-Medium Size Limitations

The RTP protocol, being designed for ”real-time” transport of media, behaves like
a streaming protocol should. RTP datagram packets are relatively small and there
are usually tens to hundreds of them sent per second in the business of relaying
audio between two peers. Additionally, different audio Codecs provide for different
encoded audio sample sizes, resulting in a variable amount of available space for
embedding, dependent upon which Codec the audio for any individual RTP packet
is encoded with. Due to the small size of these packets and the common constraint
among many steganographic embedding methods which limits the amount of data
that is able to be embedded to a fraction of the size of the cover-medium, a very
limited amount of space is actually available for the embedding of message data.
As such, large message data will inevitably be required to be split across multiple
cover-packets and thus must be reassembled at it’s destination.

2.3.3 Latency

RTP by design, being a protocol intended to transmit real-time multimedia data like
audio or video, is extremely susceptible to media degradation due to packet latency.
As such, any processing overhead from the embedding of message data into the
cover-medium or delay due to inspection of potential cover-medium packets may
have a noticeable impact on the end-user’s quality of experience. When manipu-

13

lating an RTP stream between two endpoints that are expecting packet delivery in
a timely manner, a steganographic system cannot be overly invasive when packets
are not needed for embedding and must be efficient at it’s task when they are.

2.3.4 Tracking of RTP Streams

In normal operation, RTP establishes two packet streams to form a session between
two endpoints. Each endpoint uses one stream to send multimedia data to the other,
thus achieving full-duplex communication via two unidirectional packet streams.
When identifying an RTP session to be utilized as cover-medium for a full-duplex
covert communications channel, the two paired streams must be correctly identified
and tracked.

2.3.5 Raw vs. Compressed Audio

It is important to consider that audio being transported via RTP may be compressed.
To successfully embed message data into a cover-medium, it is generally required
that it is performed against the raw data so as to properly identify and utilize
the cover-medium’s redundant bits. As such, identification of compressed cover-
medium, decompression, modification of the raw data, and then re-compression may
be required.

Lossy vs. Lossless Compression

When considering the potential use of compression within the cover-medium, it is
also important to consider the type of compression used. Most compression methods
can be categorized into two types; lossy compression and lossless compression.

If the compression method used is of the lossy type, the integrity of any message
data embedded into the cover-medium prior to compression may be compromised
when the stego-medium is uncompressed as some of the original audio data may
be lost. Due to this property of lossy compression types, audio data compressed
in this manner may not be appropriate for use as cover-medium without additional
safeguards against this loss.

2.3.6 Media Gateway Audio Modifications

RTP, as a protocol being potentially routed across multiple networks by it’s under-
lying transport, network, and data-link protocols, may also be routed or gatewayed
along it’s path by other intermediary telephony devices like Media Gateways or
Back-to-Back User Agent (B2BUA) devices. At such transition points, the media

14

being transported may undergo potential modification. Some of these modifications
include translation from one audio Codec to another, down-sampling, normalization,
or mixing with other audio streams. Invasive changes such as these can potentially
impact the integrity of any message data embedded within the stego-medium.

Audio Codec Conversion

Codec conversion takes place when an intermediary device such as a Media Gateway
is providing translation services for two endpoints that support disparate sets of
Codecs. When one endpoint only supports GSM encoding of audio and the other
only G.711 or Speex encoding, unless an intermediary translator is involved these two
devices cannot directly establish an RTP audio channel. The intermediary device
essentially translates audio from the Codec being used by one endpoint to the Codec
that can be understood by the other. Audio Codec conversion may also take place if
the inherent latency or Quality-of-Service (QoS) properties of the transport network
on either side of the intermediary device requires a lighter-weight Codec.

Down-sampling and Normalization

Down-sampling and normalization may be performed on an audio payload to bring
the properties of the audio such as volume and background white-noise more in
line with the other party’s audio stream. Occasionally this task is handled by the
endpoint devices when playing the media for the user. In that scenario the integrity
of the stego-medium will likely remain intact as the audio payload isn’t actually
modified in transit. However, there are scenarios where an intermediary media
device may actually re-sample or otherwise modify the payload of the media stream
specifically to alter it’s audible properties. In these cases, the integrity of the stego-
medium may become compromised.

Audio Stream Mixing

When performing conferencing or other types of multi-party calls, it is possible that
multiple parties audio streams may be mixed together. Such invasive modification
of the audio will almost certainly compromise the integrity of the stego-medium.

2.3.7 Mid-session Audio Codec Change

Most VoIP signaling protocols provide methods for VoIP endpoints to change the
audio encoding method on the fly. Due to this functionality an RTP session may
begin using one Codec and then switch to a completely different Codec mid-session.
This functionality may be used for a variety of reasons including QoS metrics not

15

being met, inclusion of a new endpoint in the call that does not support the original
Codec, or any number of other reasons. Due to this dynamic nature, any stegano-
graphic system attempting to embed data into an RTP stream’s packets must be
able to dynamically adjust it’s message embedding algorithm to accommodate dif-
ferent Codecs’ various sample sizes and layout within the RTP packet payload.

16

Chapter 3

Reference Implementation:
SteganRTP

3.1 Design Goals

The goals set forth for the SteganRTP reference implementation[20] are as follows:

3.1.1 Achieve Steganography

As stated in Section 1.4, the primary goal of steganography is to hide the fact that
communication is taking place. Therefore, it is the primary goal of this reference
implementation to prevent indication to a third-party observer of the RTP audio
stream that anything other than the overt communication between the two RTP
endpoints is taking place.

3.1.2 Full-Duplex Communications Channel

This reference implementation intends to achieve a full-duplex covert communica-
tions channel between the two RTP endpoints, mirroring the utility of RTP itself.
This will be accomplished by use of both RTP streams that comprise an RTP ses-
sion, each which flow from one RTP endpoint to the other. By utilizing both RTP
streams within the session, either application will be able to both send and receive
data to the remote application simultaneously.

17

3.1.3 Compensate for Unreliable Transport

This reference implementation intends to compensate for the unreliable transport
mechanism that RTP employs. This will be accomplished by providing a data
sequencing, tracking, and resending mechanism.

3.1.4 Identical User Experience Regardless of Mode of
Operation

This reference implementation intends to provide two distinct modes of operation.
The first mode of operation is described as the SteganRTP application running
locally on the same host as the RTP endpoint. The second mode of operation
is described as the SteganRTP application running on an intermediary host along
the route from one RTP endpoint to another. This intermediary host must be for-
warding or bridging the RTP traffic as an active man-in-the-middle (MITM). This
reference implementation intends for the user experience of running the SteganRTP
application to be identical regardless of the mode of operation. This will be ac-
complished by interfacing directly with the host operating system’s network stack
in order to hook the desired packet streams.

3.1.5 Multi-type Data Transfer

This reference implementation intends to provide simultaneous transfer of multiple
types of data, such as text chat, file transfer, and remote shell access. This will be
accomplished by providing type indication and formatting for each type of supported
data being transferred.

3.2 Operational Architecture

As mentioned in Section 3.1.4 above, the application will operate in either of two
distinct modes, the application running locally on the same host as the RTP end-
point (see Figure 3.1 below), or the application running as an active MITM (see
Figure 3.2 below). It is not intended that the two SteganRTP applications which
are communicating be operating in the same mode. Thus, a mixed-mode operation
such as is described in Figure 3.3 below is entirely possible.

It is important to note that the SteganRTP application is only required to be
bridging or forwarding the RTP stream considered outbound from the closer RTP
endpoint destined for the more remote RTP endpoint. Conversely, the application
is only required to be able to observe the inbound RTP stream flowing in the other

18

direction as it does not need to invasively modify any packets from the inbound
stream.

3.2.1 Local Operation

In Figure 3.1 below, the gray boxes represent network hosts. The green boxes
represent the SteganRTP application. The telephone icons represent the RTP end-
point applications, and the black arrows represent the two distinct RTP streams,
one flowing in either direction. In this scenario, both instances of the SteganRTP
application are running on the same hosts as the RTP endpoint applications.

Figure 3.1: SteganRTP running locally.

3.2.2 Man-in-the-Middle Operation

In Figure 3.2 below, the gray boxes represent network hosts. The green boxes repre-
sent the SteganRTP application. The telephone icons represent the RTP endpoint
applications, and the black arrows represent the two distinct RTP streams, one
flowing in either direction. In this scenario, both instances of the SteganRTP ap-
plication are running on intermediary hosts along the route between the two RTP
endpoint hosts.

19

Figure 3.2: SteganRTP running as an active man-in-the-middle.

3.2.3 Mixed Operation

In Figure 3.3 below, the gray boxes represent network hosts. The green boxes
represent the SteganRTP application. The telephone icons represent the RTP end-
point applications, and the black arrows represent the two distinct RTP streams,
one flowing in either direction. In this scenario, the SteganRTP application on the
left of the diagram, SteganRTP A, is running on an intermediary host along the
route from it’s nearer RTP endpoint, Endpoint A, to it’s remote RTP endpoint,
Endpoint B. The SteganRTP application on the right of the diagram, SteganRTP
B, is running on the same host as it’s nearer RTP endpoint, Endpoint B.

Figure 3.3: SteganRTP running locally on one endpoint host and as an active
man-in-the-middle on the other.

20

3.3 Application Flow

Figure 3.4 below describes the overall SteganRTP application flow.

Figure 3.4: SteganRTP application process flowchart.

When the SteganRTP application begins, it performs an initialization phase, setting
up internal memory structures and configuration information from the command-
line. Next, it observes network traffic until it identifies an RTP session which falls
within the constraints specified by the user on the command-line. These constraints
are how the user controls which RTP session between which RTP endpoints to utilize
as cover-medium, and thus, which remote SteganRTP application to communicate
with. After identifying an RTP session, SteganRTP inserts hooks into the host’s
network stack in order to receive the desired packets upon transmission or arrival, or
both if the SteganRTP application is operating in the active MITM scenario. From
these hooks a packet queue is created which the application then reads individual
packets from. Whether the packet is considered inbound or outbound determines
the further course of the application. Whether a packet is considered inbound
or outbound is determined by which RTP endpoint network address and port is
defined as ”local” or ”remote”, which in the case of the active MITM operation

21

can be inferred as ”near” or ”far”, respectively.

When an inbound RTP packet is read from the queue, it is copied for the applica-
tion’s use and the original packet is immediately sent as the SteganRTP application
does not need to invasively modify it. All received inbound packets are assumed
to be potential cover-medium for the covert channel, so potential message data
is then extracted from each inbound packet. The potential message data is then
decrypted, and the result is checked for a valid checksum value in the potential
message’s header. If the checksum is valid, the message data is sent to the message
handler component for processing.

When an outbound RTP packet is read from the queue, the SteganRTP application
immediately polls it’s outbound data queues for any message data waiting to be sent.
If there is no data waiting to be sent, the packet is immediately sent unmodified.
If there is message data waiting to be sent, as much of that data as will fit into
the cover-medium packet’s payload is read from it’s file descriptor, packaged as a
formatted message, encrypted, and then steganographically embedded into the RTP
packet’s payload. The modified RTP packet is then sent in place of the original
RTP packet.

3.3.1 Initialization

SteganRTP, upon start-up, first initializes various memory structures such as mes-
sage caches, configuration settings, and an RTP session context structure.

The most notable task performed during the initialization phase is the computation
of keying information used by various components. The method chosen for creation
of this keying information is to create a 20-byte SHA-1[21] hash of a user-supplied
shared secret text string. Due to the result of this operation being used as keying
information by various components of the overall SteganRTP system, this shared
secret must be provided to both SteganRTP applications that wish to communicate
with each other.

The 20-byte result of the SHA-1 hash function against the user-supplied shared
secret is defined here as the keyhash and described by Equation 3.1 below.

keyhash = SHA − 1(sharedsecret) (3.1)

SHA-1 Collision Irrelevance

In February of 2005, a group of Chinese researchers developed an algorithm for
finding SHA-1 hash collisions faster than brute force[22]. They proved it possible
to find collisions in the full 80-step SHA-1 in less than 269 hash operations, about
2,000 times faster than brute force of the 280 hash operation theoretical bound. The
paper also includes search attacks for finding collisions in the 58-step SHA-1 in 233

22

hash operations and SHA-0 in 239 hash operations. The biggest impact that this
discovery has pertains to use of SHA-1 hashes in digital signatures and technologies
where one of the pre-images is known. By searching for a second pre-image which
hashes to the same value as the original, a digital signature for the original may
theoretically be used to authenticate a forgery.

The use of SHA-1 by the SteganRTP reference implementation is solely to compute
a bit-pad of keying information with a longer, seemingly more random bit distribu-
tion than what is likely provided directly by user input as the shared secret. The
result of the SHA-1 hash of the user’s shared secret is used directly as keying infor-
mation. In order to launch a collision attack against the hash used as the bit-pad,
the attacker would have to either obtain the original user-supplied shared secret
or the hash itself. Due to the hash being used directly as keying information, the
possession of it by an attacker has already compromised the security of the data
being obfuscated with it; computing one or more additional pre-images which hash
to a collision provides no additional value for the attacker.

3.3.2 RTP Session Identification

RTP session identification is performed using libfindrtp[23]. libfindrtp is a C li-
brary that identifies sessions between two endpoints by observing VoIP signaling
traffic and watching for call set-up. Constraints can be passed to the library to
limit session identification to a single endpoint, specific multiple endpoints, or even
specific multiple endpoints using specific UDP ports. These constraints are passed
through to libfindrtp from the input provided to the SteganRTP application via
the command-line. At the time of this writing, libfindrtp supports session identi-
fication via the Session Initiation Protocol[1] (SIP) and Cisco Skinny Call Control
Protocol[3] (SCCP) VoIP signaling protocols.

3.3.3 Hooking Packets

The SteganRTP application makes use of NetFilter[24] hook points in order to
receive both inbound and outbound RTP session packets. The Linux kernel is
instructed to pass specific packets to an application by inserting an iptables rule
describing the packets with a target of QUEUE. Packets which match a rule with a
target of QUEUE are queued to be read by a registered NetFilter user-space queuing
agent. Access to this queue is provided to the SteganRTP application via an API
provided by the NetFilter C library libipq. An iptables rule used to hook packets via
this interface may be inserted at any of the NetFilter hook points as indicated by
the circle icons in Figure 3.5 below.

23

Figure 3.5: NetFilter hook points.

For the most beneficial use by the SteganRTP application, packets must be hooked
at points where their integrity as stego-medium is maintained. Thus, inbound pack-
ets are hooked at the PRE-ROUTING hook point and outbound packets are hooked
at the POST-ROUTING hook point. In this manner, incoming packets are able to
be processed by the SteganRTP application prior to any potential modification by
the local system and outbound packets are able to be modified by SteganRTP after
the local system is essentially finished with them.

SteganRTP registers itself as a user-space queuing agent for NetFilter via libipq.
SteganRTP then creates two iptables rules in the NetFilter engine with targets of
QUEUE. The first rule matches the inbound RTP stream at the PRE-ROUTING
hook point. The second rule matches the outbound RTP stream at the POST-
ROUTING hook point.

3.3.4 Reading Packets

Using the packet hooks described in the previous section, SteganRTP is then able
to read packets from the provided packet queue, determine if they are considered
inbound or outbound packets, and pass them to the appropriate processing func-
tions. The processing functions may then analyze them, modify them if needed,
place modified versions back into the queue in place of the original, and instruct
the queue to accept the packet for further routing.

3.3.5 Inbound Processing

As outlined in Figure 3.4 above, the basic steps for inbound packet processing are
as follows:

24

1. Immediately accept the packet for routing.

2. Extract potential message data.

3. Decrypt potential message data.

4. Verify the potential message header’s checksum.

5. Send valid messages to the message handler.

3.3.6 Outbound Processing

As outlined in Figure 3.4 above, the basic steps for outbound packet processing are
as follows:

1. Poll for message data waiting to be sent.

2. If there is no message data waiting, immediately send the packet and return.

3. Create a new formatted message with header based on the properties of the
RTP packet who’s payload is being used as cover-medium.

4. Read as much of the waiting data as will fit in the formatted message.

5. Encrypt the message.

6. Embed the message into the RTP payload cover-medium.

7. Send the modified RTP packet in place of the original via the NetFilter user-
space queue.

3.3.7 Session Timeout

In the event that no RTP packets are available in the NetFilter queue for a period of
time, all session information is dropped and process flow returns to the RTP session
identification phase to locate a new session for use.

In the event that RTP packets are being received but no valid messages have
been received for a period of time, the SteganRTP application attempts to solicit
a response from the remote application. If these solicitations have failed by the
timeout period, all session information is dropped and process flow returns to the
RTP session identification phase to locate a new session for use.

25

3.4 Communication Protocol Specification

The SteganRTP communication protocol makes use of formatted messages which
are steganographically embedded into the payloads of individual RTP packets. This
steganographic embedding creates the covert channel within which the communi-
cation protocol described in the following sections operates.

3.4.1 The cover medium: RTP Packet

Figure 3.6 below, reproduced verbatim from the RTP specification[4], describes
the RTP packet header. Of special interest are the payload type (PT), sequence
number, and timestamp fields, all of which will become relevant when building,
encrypting, and steganographically embedding the message data into the packet’s
payload. The remainder of the packet contains an optional number of header exten-
sions which are irrelevant to the SteganRTP communication protocol, and finally
the encoded media data, otherwise known as the RTP packet’s payload, which will
be utilized by SteganRTP as cover-medium.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|V=2|P|X| CC |M| PT | sequence number |
+-+
| timestamp |
+-+
| synchronization source (SSRC) identifier |
+=+
| contributing source (CSRC) identifiers |
| |
+-+

Figure 3.6: RTP packet header, from RFC-1889.

The 7-bit payload type field indicates the audio Codec used to encode the payload.
The 16-bit sequence number field is a standard incrementing sequence number.
The 32-bit timestamp field describes the sampling instant of the first sample in the
payload, and the remaining packet data is the audio payload as encoded by the
indicated Codec.

26

3.4.2 Message Format

The format of the messages that the SteganRTP applications use to communicate
with each other is described in the following sections. Figure 3.7 below describes the
core message format of all types of SteganRTP formatted messages. This format
consists of two fields, the Checksum / ID and Sequence fields followed by a standard
Type-Length-Value[25] (TLV) structure. The Checksum / ID, Sequence, Type, and
Length fields comprise the message header, while the Value field is considered the
message body, or payload.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Checksum / ID |
+-+
| Sequence | Type | Length |
+-+
| Value (Type-Defined Body) |
! !
. .

Figure 3.7: SteganRTP message format.

The 32-bit Checksum / ID field contains a hash value which is used to identify
whether or not a potential message that is extracted from the payload of an inbound
RTP packet is indeed a valid SteganRTP communication protocol message. The
hashword[26] function is used to compute this hash. The function’s two primary
operands consist of the keying information defined as keyhash in Section 3.3.1 and
the sum of the message’s Sequence, Type, and Length header fields. This value is
defined as checksumid and is described by Equation 3.2 below.

checksumid = hashword(keyhash, (Sequence + Type + Length)) (3.2)

The verification of extracted potential messages is required due to the fact that some
packets in the inbound RTP stream may not contain SteganRTP messages if there
was no outbound data waiting to be sent by the remote application when the RTP
packet in question traversed it. The hash function used to compute this checksum
value incorporates the keyhash so as not to be computable solely from message
data, which would allow an observer to also verify that a message is embedded
within the RTP payload.

The 16-bit Sequence field is a standard incrementing sequence number, the 8-bit
Type field indicates what type of message it is, and the 8-bit Length field indicates
the length, in bytes, of the Value field. The Value field contains the message’s
payload.

27

3.4.3 Message Types

The currently defined message types are listed in Table 3.1 below.

Table 3.1: SteganRTP Message Types
ID Type
0 Reserved
1 Control

10 Chat Data
11 File Data
12 Shell Input Data
13 Shell Output Data

Control Messages

Figure 3.8 below describes the format of SteganRTP control messages. Control
messages are used to send non-user data to the remote SteganRTP application to
convey operational information such as requesting a message resend or indicating
that a file is about to be sent and providing that file’s context information. Control
messages consist of one or more stacked TLV structures and are not required to be
32-bit aligned.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Control Type | Length | Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
! !
. .
+-+
| Control Type | Length | Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
! !
. .

Figure 3.8: SteganRTP control message format.

The 8-bit Control Type field indicates the type of control data contained in the TLV
structure whereas the 8-bit Length field indicates the size, in bytes, of the Value
field. The Value field contains the control data of the indicated type.

Control Message Types

28

The currently defined control message types are listed in Table 3.2 below.

Table 3.2: SteganRTP Control Message Types
ID Type
0 Reserved
1 Echo Request
2 Echo Reply
3 Resend
4 Start File
5 End File

Type 1: Echo Request

The Echo Request control message is used to prompt the remote SteganRTP appli-
cation for a response, allowing the local application making the request to determine
if the remote application is still present and communicating. This message is sent
when a session inactivity timeout limit is approaching. Figure 3.9 below describes
the format of an Echo Request control message.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 1 | 2 | Seq | Payload |
+-+

Figure 3.9: SteganRTP Echo Request control message.

The Control Type field’s value is 1, indicating that it is an Echo Request control
message, and the Length field’s value is 2, indicating the 2-byte control message
payload. The control message payload consists of an 8-bit Seq field which contains
a standard incrementing sequence number specific to Echo Requests, and an 8-bit
Echo Request Payload, which contains a random bit-string. The Seq value is used
to correlate sent Echo Request messages with received Echo Reply messages and the
Payload field received in an Echo Reply message must match the random bit-string
sent in it’s corresponding Echo Request message.

Type 2: Echo Reply

The Echo Reply control message is used to respond to the remote SteganRTP
application’s Echo Request message. The format of the Echo Reply message is
identical to the Echo Request message as described in 3.9 above, however the
Control Type field’s value is 2 rather than 1.

Type 3: Resend

29

The Resend control message is used to request the resending of a specified message
by the remote SteganRTP application, allowing the local application to request
missing or corrupted messages. This message is sent when the application begins
to receive messages which contain sequence numbers beyond the next sequence
number that is expected. Figure 3.10 below describes the format of a Resend
control message.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 3 | 2 | Requested Seq Number |
+-+

Figure 3.10: SteganRTP Resend control message.

The Control Type field’s value is 3, indicating that it is a Resend control message,
and the Length field’s value is 2, indicating the 2-byte control message payload.
The control message payload consists of a 16-bit Requested Seq Number field
which indicates the sequence number of the message to be resent.

Type 4: Start File

The Start File control message is used to indicate to the remote application that that
local application will begin sending file data for a new file transfer. This message
is sent when the user executes the command to transfer a file. Figure 3.11 below
describes the format of a Start File control message.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 4 | # | File ID | |
+-+ |
| Filename |
! !
. .

Figure 3.11: SteganRTP Start File control message.

The Control Type field’s value is 4, indicating that it is a Start File control message,
and the Length field’s value is 1 plus the string length, in bytes, of the filename of
the file being sent, indicating the total size of the control message payload. The
control message payload consists of an 8-bit File ID field which indicates the sending
application’s unique ID value for the file, and the Filename field is the name of the
file being sent in ASCII.

30

Type 5: End File

The End File control message is used to indicate to the remote application that
that local application is finished sending file data for a particular file transfer. This
message is sent when the local application has finished sending all data related to
the open file descriptor being used to send data from a file. Figure 3.12 below
describes the format of a End File control message.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 5 | 1 | File ID |
+-+

Figure 3.12: SteganRTP End File control message.

The Control Type field’s value is 5, indicating that it is a End File control message,
and the Length field’s value is 1, indicating the 1-byte control message payload.
The control message payload consists of an 8-bit File ID field which indicates the
sending application’s unique ID value for the file who’s transfer is now complete.

Data Messages

Non-control messages are considered data messages and contain some form of actual
data for the user, whether it be text chat data, incoming file data, a command for
the local shell service, or a response from the remote shell service. These various
types of data are differentiated by the value of the message header’s Type field.

Chat Data Messages

The Chat Data Message is used to transmit text chat data between SteganRTP
applications. This type of data requires no context information, thus the message
payload contains only a single field, Chat Data, as described by Figure 3.13 below.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Chat Data |
! !
. .

Figure 3.13: SteganRTP Chat Data Message.

File Data Messages

31

The File Data Message is used to transmit data file contents between SteganRTP
applications. Because multiple file transfers may be in progress at any given time,
this type of data must be accompanied with context information indicating which
file transfer the chunk of data belongs to. Figure 3.14 below describes the format
of a File Data message.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| File ID | File Data |
+-+-+-+-+-+-+-+-+ |
! !
. .

Figure 3.14: SteganRTP File Data Message.

The File ID field’s value is a unique file ID number chosen for the particular file
transfer taking place and is used to indicate which file transfer the chunk of data
contained in the File Data field belongs to. The File Data field is a chunk of data
from the file being transferred. The proper order for reconstruction of the file chunks
transferred by these messages is ensured by the message header’s sequence number.

Shell Data Messages

The Shell Input Data and Shell Output Data Messages are used to transmit shell
input to, and receive shell output from, a remote SteganRTP shell service, respec-
tively. This type of data requires no context information, thus the message payload
contains only a single field, Shell Data, as described by Figure 3.15 below.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Shell Data |
! !
. .

Figure 3.15: SteganRTP Shell Data Message.

32

3.5 Functional Components

3.5.1 File Descriptor Lists

Two separate file descriptor lists are maintained; destinations for inbound data and
sources of outbound data. The data structure for storage of a file descriptor and
it’s data for inclusion in either list is defined in Figure 3.16 below.

/* Structure used for file descriptor information */
typedef struct file_info_t {

u_int8_t id;
char *name;
u_int8_t type;
int fd;
struct file_info_t *next;
struct file_info_t *prev;

} file_info;

Figure 3.16: C structure for File Descriptor List elements.

The independence of the file descriptor lists from the outbound data polling and
message handler components provides for a flexible and versatile environment within
which to expand functionality. In order to include new data types for transfer, all
that is required is to define a new data type ID for both applications to correlate
messages upon, open a file descriptor to the appropriate place to read or write the
data, and include the file descriptor in the appropriate list.

Inbound File Descriptors

Inbound File Descriptors are a list of file descriptors for various destinations that
inbound data may be directed to. The order of these file descriptors as included
in the list is irrelevant as which file descriptor data is destined for is looked up
by matching the message type and properties with the file descriptor’s type and
properties.

Chat Interface

Inbound chat data is written to this file descriptor. This file descriptor is tied to the
chat window of the SteganRTP ncurses interface.

Remote Shell Interface

Inbound shell data from the remote application’s shell service is written to this file
descriptor. This file descriptor is tied to the shell window of the SteganRTP ncurses

33

interface.

Local Shell Service

Inbound shell data to the local application’s shell service is written to this file
descriptor. This file descriptor is tied to the local process providing shell access.
This file descriptor does not exist in the list if the local shell service is disabled.

File Transfers

Any number of file descriptors for data files being actively received may be appended
or removed from the end of the inbound file descriptors list.

Outbound File Descriptors

Outbound File Descriptors are polled, in order, for data waiting to be sent. Due to
being polled in order, they are essentially prioritized in that order and data waiting
to be sent from a prior descriptor in the list will have precedence over data waiting
to be sent from a latter descriptor. The file descriptors included in the outbound
list are as follows:

Raw Message Interface

Entire, unencrypted outbound messages are written to this file descriptor. This
file descriptor is used for the replaying of entire messages in response to a Resend
control message as described in Section 3.4.3.

Control Message Interface

Outbound control messages as described in Section 3.4.3 are written to this file
descriptor after creation.

Chat Interface

Outbound chat data is written to this file descriptor. This file descriptor is tied to
the command window of the SteganRTP ncurses interface. All non-command text
entered into the command window while in chat mode is considered chat data.

Remote Shell Interface

Outbound shell data is written to this file descriptor. This file descriptor is tied to
the command window of the SteganRTP ncurses interface. All non-command text
entered into the command window while in shell mode is considered shell data.

Local Shell Service

Outbound shell data from the local shell service is written to this file descriptor. This
file descriptor is tied to the local process providing shell access. This file descriptor
does not exist in the list if the local shell service is disabled.

34

File Transfers

Any number of file descriptors for data files being actively sent may be appended
or removed from the end of the outbound file descriptors list.

3.5.2 Message Handler

The SteganRTP application’s message handler receives all valid incoming messages
as verified by the RTP packet receiving system for inbound packets. This component
performs all internal state changes and administrative tasks in response to control
messages. It also handles the routing of inbound data message payloads to the
appropriate file descriptor in the inbound file descriptors list.

Administrative Tasks

Echo Reply

If an Echo Request control message is received from the remote application, the
message handler constructs an appropriate Echo Reply control message as described
in Section 3.4.3 and writes it to the Control Message Interface file descriptor in the
outbound file descriptor list.

Start File Transfer

If a Start File control message is received from the remote application, the message
handler opens a new file descriptor using the file’s context information contained in
the control message and appends the file descriptor to the inbound file descriptors
list.

End File Transfer

If an End File control message is received from the remote application, the message
handler closes the file descriptor for the file transfer indicated and removes it from
the inbound file descriptors list.

Data Routing

Chat Data

Inbound text chat data is buffered until a complete line of text is received and then
is written to the Chat Interface file descriptor in the inbound file descriptors list. A
complete line of text is defined as being terminated by a new-line character.

File Data

35

Inbound file transfer data is written to the appropriate file descriptor in the inbound
file descriptors list for the file transfer that the data belongs to.

Shell Input Data

Shell Input Data messages contain input data for the local application’s shell service
and is written to the Local Shell Service file descriptor in the inbound file descriptors
list.

Shell Output Data

Shell Output Data messages contain response data from the remote application’s
shell service and is written to the Remote Shell Interface file descriptor in the inbound
file descriptors list.

3.5.3 Encryption System

The encryption method chosen for use in the SteganRTP reference implementa-
tion is not really encryption at all. In favor of light-weight and speed, a simple
Exclusive-OR[27] (XOR) obfuscation method was chosen as a symmetric cipher.
The choice of encryption method here does not indicate that another, more robust
type of encryption could not be used; rather, the modular design of the reference
implementation promotes drop-in replacement of the current encryption system en-
tirely, assuming that the replacement encryption method does not have a noticeable
impact upon the latency of the overt RTP stream being used as cover-medium.

The author does not claim that the obfuscation method used by the SteganRTP
reference implementation to be cryptographically secure. Rather, the obfuscation
is merely meant to obscure the message data and provide some rudimentary pro-
tections against statistical steganalysis which focuses upon perceptible properties of
language within the stego-medium.

The XOR obfuscation method employed by the SteganRTP reference implementa-
tion consists of the following steps:

1. Create a bit-pad for use as keying information.

2. Choose an offset into the bit pad to begin using the keying information.

3. XOR the message against the bit pad, byte by byte.

Bit-pad Creation

The method chosen for creation of the bit-pad is simply to duplicate the bit-string
found in keyhash, the creation of which is described in detail in Section 3.3.1.

36

Choose a Bit-pad Offset

To help protect against some forms of statistical analysis that have proved effective
against XOR obfuscation using static keying information, it was decided against
beginning every XOR loop at the same position within keyhash. To avoid this, a
new offset into keyhash for each message must be chosen. The method that the
SteganRTP reference implementation employs to determine this offset is to use the
hashword[26] function to create a 32-bit hash of keyhash and the sum of the RTP
packet being embedded into’s Seq and Timestamp header fields. The resultant
hash is then interpreted as a 32-bit integer. The integer modulus 20 is the chosen
offset into keyhash.

The integer which is the result of the offset choosing operation and is within the
range of 0 through 19 is defined here as keyhash offset and described by Equation
3.3 below.

keyhash offset = hashword(keyhash, (RTP Seq + RTP TS)) mod 20 (3.3)

The keyhash offset equation incorporates keyhash so as to not be entirely com-
putable from observable information in the RTP packet header.

XOR Loop

When used as a bit-pad for the XOR operation loop, keyhash is used 8-bits, or
1-byte, at a time. The XOR loop begins with the first byte of the message to
be obfuscated and the byte located at index keyhash offset within keyhash. The
two bytes are XORed to produce a result byte. This result byte is placed into the
obfuscated message buffer at the same byte index as the original message byte. If
the end of the bit-pad is reached, the position of the next byte in the bit-pad returns
to the beginning of the bit-pad. When the end of the original message is reached,
the obfuscated message buffer should be of equal length to the original message
and have one corresponding obfuscated byte for each original byte in the message.

It is important to note that within the scope of steganography terminology, whether
or not message data is obfuscated or encrypted is irrelevant. As such, further
reference to the obfuscated message will still be referred to as the message, or
message data.

3.5.4 Embedding System

The embedding system that was developed for the SteganRTP reference implemen-
tation is a generalized least-significant-bit (LSB) steganographic data embedding
method. It is generalized such that when provided with a cover-medium buffer, it’s
length, the size of each word value within the cover-medium buffer, and the message

37

buffer to be embedded, it is then able to perform the LSB embedding operation.
In this way, any audio Codec which uses a linear grouping of fixed-length audio
samples should be able to be utilized as cover-medium by the embedding system.

For the purpose of discussion of the SteganRTP embedding system, the term word
value used in this context is equivalent to audio sample. The example used here,
as well as the only Codec currently supported by the reference implementation, is
G.711. G.711 is a Codec which encodes audio as a linear grouping of 8-bit audio
samples. This encoded data is transported by RTP packets as their payload and
will serve as cover-medium.

Using the generalized LSB embedding method, the LSB of each word value in
the cover-medium is modified to be equivalent to a single bit from the message
data buffer, in order. The properties of the RTP packet, such as it’s payload
length and payload type header value, determine how much message data can be
embedded into the packet’s payload. The RTP packet’s payload size is determined
by subtracting the size of the RTP packet’s header from the value of the UDP
packet header’s Length field[5]. The wordsize is equivalent to the sample size used
by the RTP packet’s Codec, indicated by the RTP packet header’s payload type
field. Modifying 1 bit from each word value requires 8 word values to embed a
single byte of message data. Thus, the amount of available space within an RTP
packet’s payload for embedding is found by multiplying the word value size by 8,
then dividing the RTP packet payload size by the result.

The resultant value is defined here as the RTP packet’s available space for embed-
ding and is described by Equation 3.4 below.

available space = RTP payload size/(wordsize · 8) (3.4)

The space available for user data after prepending the SteganRTP communication
protocol’s message header is defined here as the SteganRTP message’s payload size
and is described by Equation 3.5 below.

payload size = available space − sizeof(message header) (3.5)

Thus, payload size bytes of user data can be packaged as a SteganRTP message and
embedded into an RTP packet payload cover-medium of available space bytes. If an
RTP packet is too small to contain a valid message, it is passed along unmodified.

If a message being embedded is smaller than the available space in the cover-
medium, the message is padded out to the available size with random data. This en-
sures a more uniform distribution of modified values throughout the cover-medium.

3.5.5 Extraction System

All inbound RTP packets are sent to the extraction system where potential message
data is extracted, decrypted, and then verified. The extraction system is essentially

38

a reverse of the embedding system described in Section 3.5.4 and then a pass
through the symmetric encryption system described in Section 3.5.3. This results
in an decrypted potential message where the message’s Checksum / ID header field
value can be verified to determine whether or not the extracted potential message
is valid.

If an extracted potential message is found to be valid, it is passed to the message
handler component.

3.5.6 Outbound Data Polling System

File descriptors in the outbound file descriptors list are polled, in order, for data
waiting to be sent. When a file descriptor is found to have data, a new formatted
message is created if needed and data is read to fill the payload of that message from
the file descriptor. The message type is indicated by the file descriptor’s record in the
outbound file descriptors list. The result of this operation is a formatted SteganRTP
message ready for encryption and embedding into the cover-medium.

3.5.7 Message Caching System

All inbound and outbound SteganRTP messages are cached. The outbound mes-
sage cache provides a mechanism for retrieval of any given message in the event
that the remote application issues a Resend control message requesting that the
message be resent. The inbound message cache provides a mechanism for storage
of messages received that are beyond the expected sequence number. Once the
expected message is received, the others may be read back from the cache rather
than requesting that the remote application resend them.

3.5.8 Shell Service

The local application’s shell service is essentially a child process executing a shell.
This process’s standard input and output file descriptors are replaced with file de-
scriptors which are stored in the inbound and outbound file descriptors lists, re-
spectively. The local shell service is disabled by default in the SteganRTP reference
implementation and must be enabled via the command-line.

39

3.6 Use

3.6.1 Command-line

The SteganRTP application provides a number of command-line arguments allowing
for control and configuration of various components. The following sections describe
each in detail.

Usage Output Overview

The following usage output was copied verbatim from the most recent version of
the reference implementation, SteganRTP 0.3b.

Usage: steganrtp [general options] -t <host> -k <keyphrase>
required options:
at least one of:
-a <host> The "source" of the RTP session, or, host

treated as the "close" endpoint (host A)
-b <host> The "destination" of the RTP session, or,

host treated as the "remote" endpoint (host B)
-k <keyphrase> Shared secret used as a key to obfuscate

communications
general options:
-c <port> Host A’s RTP port
-d <port> Host B’s RTP port
-i <interface> Interface device (defaults to eth0)
-s Enable the shell service (DANGEROUS)
-v Increase verbosity (repeat for additional

verbosity)
help and documentation:
-V Print version information and exit
-e Show usage examples and exit
-h Print help message and exit

Command-line Arguments

The following command-line arguments are available from the SteganRTP applica-
tion’s command-line.

-a <host>

<host> is the name or IP address of the closest side of the RTP session desired to
be utilized as cover-medium (Host A).

40

-b <host>

<host> is the name or IP address of the remote size of the RTP session desired to
be utilized as cover-medium (Host B).

-k <keyphrase>

<keyphrase> is a shared secret between the users of the two SteganRTP instances
which will be communicating. In some cases, a single user may be running both
instances. The keyphrase is used to generate a bit-pad via the SHA-1 hash function
which will later be used to obfuscate the data being steganographically embedded
into the RTP audio cover-data.

-c <port>

<port> is the RTP port used by Host A.

-d <port>

<port> is the RTP port used by Host B.

-i <interface>

<interface> is the interface to use on the local host. This parameter defaults to
”eth0”.

-s

This argument enables the command shell service. If the command shell service
is enabled, the user of the remote instance of SteganRTP will be able to execute
commands on the local system as the user running SteganRTP. You likely don’t
want this unless you are the user running both instances of SteganRTP and intend
to use the remote instance as an interface for a remote shell on that host. This
feature can be useful for remote administration of a system without direct access
to the system, assuming that RTP is allowed to traverse traffic policy enforcement
points.

-v

This argument increases the verbosity level. Repeat for higher levels of verbosity.

-V

This argument prints SteganRTP’s version information and exits.

-e

This argument prints a quick examples reference.

-h

This argument prints the usage (help) information and exits.

41

Usage Examples

You can print a quick reference of the following examples from the SteganRTP
command-line by using the -e command-line argument.

The simplest command-line you can execute to successfully run SteganRTP is:

steganrtp -k <keyphrase> -b <host>

This will begin a session utilizing any RTP session involving <host-b> as the des-
tination endpoint.

steganrtp -k <keyphrase> -a <host-a> -b <host-b> -i <interface>

This will begin a session utilizing any RTP session between <host-a> and <host-b>
using interface <interface>

steganrtp -k <keyphrase> -a <host-a> -b <host-b> -i <interface> -s

This is the same as the previous example but will enable the command shell service:

steganrtp -k <keyphrase> -a <host-a> -b <host-b> -c <a-port> -d
<b-port>

This will begin a session utilizing a specific RTP session between <host-a> on
port <a-port> and <host-b> on <b-port>. Note, this will effectively disable RTP
session auto-identification and will attempt to use an RTP session as described
whether it exists or not. This is useful for when an RTP session that is desirable for
utilization is already in progress as the other examples rely on libfindrtp to identify
the RTP session as it is being set up by VoIP signaling and thus must be waiting
for the call-setup.

3.6.2 User Interface

SteganRTP provides a curses user interface featuring four windows; the Command
window at the bottom of the screen, the large Main window in the middle of the
screen, and the Input and Output Status windows at the top of the screen.

Windows

Command Window

42

All keyboard input, if accepted, is displayed in the Command window. Lines of
input that are not prefixed with a slash (’/’) character are treated as chat text and
are sent to the remote instance of SteganRTP as such. Lines of input that begin
with a slash are considered commands and are processed by the local instance of
SteganRTP.

Main Window

When in Chat mode, chat text and general SteganRTP information messages and
events are displayed in the Main window. When in shell mode, this window is
overloaded with the input to and output of the shell service provided by the remote
instance of SteganRTP.

Input Status Window

Events related to incoming RTP packets or SteganRTP communication messages
are displayed in the Input Status window.

Output Status Window

Events related to output RTP packets or SteganRTP communication messages are
displayed in the Output Status window.

Commands

The following commands can be executed from within the Command window:

/chat

The ”chat” command puts the interface into Chat Mode.

/sendfile <filename>

The ”sendfile” command queues a file for transmission to the remote instance of
SteganRTP. <filename> is the path location and filename of the local file to be
sent.

/shell

The ”shell” command puts the interface into Shell Mode.

/quit /exit

The ”quit” and ”exit” commands exit the program.

/help /?

The ”help” and ”?” commands print an available command list.

43

Chapter 4

Solutions to Problems and
Challenges

The following sections describe this research effort’s approach to solving many of
the problems and challenges that were identified in Section 2.3, as implemented
via the SteganRTP reference implementation. Most of the solutions that have
been devised during this research effort involved the creation of a communications
protocol to operate within the covert channel established within the cover-medium.
This protocol, detailed in Section ?? employs a formatted message header which
is prepended to user message data before being embedded in the cover-medium,
providing various utility to the application making use of the protocol.

4.1 Unreliable Transport

To mitigate the unreliable properties of the underlying transport protocols used to
transmit the cover-medium, the message header contains a sequence number. This
sequence number coupled with the message caching system allows the recipient to
both identify when an expected message is missing as well as request a resend of
a particular message via a control message. This property also provides the added
benefit of detecting erroneously or maliciously replayed messages.

When considering potential solutions for this problem, various types of Forward
Error Correction[28] (FEC) were considered. Due to the limited space available for
message data as a result of the size of cover-medium available, the additional space
required for redundant data by most algorithms considered deemed them to be unfit
for purpose within this research effort’s context.

44

4.2 Cover-Medium Size Limitations

The same property of RTP which restricts the size of available cover-medium in each
packet is luckily the same property which ensures that there are an abundance of
packets being sent between RTP endpoints every second. User data can be spread
over multiple messages and cover-packets and then reassembled at their destination.
For this research effort’s purposes and goals, namely the timely transfer of user text
chat, interactive shell access, and transfer of small files, an achieved throughput of
1,000 bytes per second as described in Section 2.2.3 was found to be more than
adequate.

4.3 Latency

To prevent against unintended impact on RTP packet latency, care was taken to
efficiently perform a number of operations:

4.3.1 Inbound Packet Processing

When receiving inbound RTP packets for processing, the receiving system does
not require making any modifications to the received packet. In the SteganRTP
reference implementation, the packet is received and immediately accepted for con-
tinued routing by the packet queue prior to extracting, decrypting, and verifying
any potential message data found within the payload.

4.3.2 Outbound Packet Processing

When receiving outbound RTP packets for processing, the fewest number of oper-
ations possible must be performed in order to make a decision on whether or not
the packet should be immediately accepted for continued routing or if it must be
held for modification. In the SteganRTP reference implementation, the packet is
received and then all active outbound file descriptors are polled for data waiting to
be sent. If no data is waiting to be sent, the packet is then accepted for continued
routing by the packet queue.

4.3.3 Encryption Overhead

When encrypting the raw message prior to embedding into the cover-medium, a low-
overhead algorithm was used. The SteganRTP reference implementation employs
an XOR against a SHA-1 hash of a user-supplied shared-secret.

45

4.4 Tracking of RTP Streams

Identification and tracking of RTP streams is handled by the libfindrtp C library
paired with the NetFilter libipq C library for tracking and hooking packets. Both
libraries were evaluated during this research effort’s initial requirements phase and
were deemed fit for purpose.

4.5 Media Gateway Audio Modifications

4.5.1 Audio Codec Conversion

Due to the nature of VoIP, it is not always possible to detect whether or not an audio
session such as RTP is terminating at the actual recipient of the call audio or at
an intermediary. As such, it is not possible to reliably transmit stego-medium from
end to end unless the actual network addresses of each endpoint are known. Due
to this limitation, the SteganRTP reference implementation assumes that there are
no intermediary devices along the media path making changes to the RTP payload.
The reference implementation makes this assumption by also assuming that the
sending and receiving applications are either running on the same hosts as the RTP
endpoint applications or are along the network path between the two visible RTP
endpoints which may or may not be intermediaries. The reference implementation
requires that these endpoint network addresses are specified by the user or identified
by the RTP session identification component.

4.6 Mid-session Audio Codec Change

The SteganRTP reference implementation’s embedding component addresses the
issue of mid-session audio Codec change by determining the audio sample word
size dynamically based on the Codec value supplied by the RTP packet’s header.
Thus, the embedding system’s parameters are derived from each individual RTP
packet that will be embedded into as cover-medium. If the RTP session were to
change Codecs mid-session, or even to change Codecs for every other packet, the
embedding system will only operate on RTP packets who’s payloads are encoded
with a Codec that the embedding system recognizes and has parameters defined
for. If the embedding system does not recognize and support a particular packet’s
Codec, that packet is passed unmodified.

46

Chapter 5

Conclusion

5.1 Design Goals

It is the author’s belief that all of the design goals set forth in Section 3.1 for the
SteganRTP reference implementation were met. The primary goal of steganog-
raphy, establishment of a full-duplex communications channel, compensation for
the unreliable transport mechanism, identical user experience regardless of mode of
operation, and multi-type data transfer were all accomplished.

5.2 Identified Challenges

It is the author’s belief that all but two of the identified problems and challenges
identified in Section 2.3 were fully addressed. The two challenges that were not
addressed were the various types of media gateway audio modifications outlined in
Section 2.3.6 due to scope and the issue of compressed audio outlined in Section
2.3.5 due to time limitations of the research effort.

5.3 Secure Real-time Transfer Protocol

It is important to note that use of the Secure Real-time Transfer Protocol (SRTP)
RTP profile may prevent specific operational scenarios such as the active MITM sce-
nario described in Section 3.2.2. Encrypting various parts of the RTP header and
RTP payload will prevent invasive modification of the payload by an external entity
to the RTP session. SRTP, however, won’t protect against steganographic embed-
ding of message data prior to the application of the SRTP encryption methods,

47

such as may be performed within the RTP endpoint application itself.

5.4 Future Research

It is the author’s intention to continue this research effort at a later time. The
identified areas for continued research include:

1. Replacement of the generalized LSB embedding system with Codec specific
embedding algorithms. Utilizing Codec-specific properties, more intelligent
embedding methods such as the inclusion of silence and voice detection can
be performed as well as a wider variety of Codecs can be supported.

2. Creation of embedding algorithms for video Codecs.

3. Replacement of the XOR obfuscation system with real encryption.

4. Addition of support for fragmentation of larger formatted messages across
multiple RTP packet payload cover-mediums.

5. Expansion of the shell service functionality into a more generalized services
framework.

48

Bibliography

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. Sip: Session initiation protocol.
RFC 3261, Internet Society (IETF), June 2002.

[2] Wikipedia. H.323 — wikipedia, the free encyclopedia. http://
en.wikipedia.org/w/index.php?title=H.323&oldid=146577248, 2007.
[Online; accessed 2-September-2007].

[3] Wikipedia. Skinny client control protocol — wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=Skinny
Client Control Protocol&oldid=133621770, 2007. [Online; accessed 2-
September-2007].

[4] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. Rtp: A transport
protocol for real-time applications. RFC 1889, Internet Society (IETF), January
1996.

[5] J. Postel. User datagram protocol. RFC 768, Internet Society (IETF), August
1980.

[6] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. The secure
real-time transport protocol (srtp). RFC 3711, Internet Society (IETF), March
2004.

[7] Mehdi Kharrazi, Husrev T. Sencar, and Nasir Memon. Image steganography:
Concepts and practice. Lecture Notes Series, Institute for Mathematical Sci-
ences, National University of Singapore, 2004.

[8] Huaiqing Wang and Shuozhong Wang. Cyber warfare: steganography vs.
steganalysis. Commun. ACM, 47(10):76–82, 2004.

[9] Tayana Morkel, Jan H P Eloff, and Martin S Olivier. An overview of im-
age steganography. In Proceedings of the Fifth Annual Information Security
South Africa Conference (ISSA2005), Sandton, South Africa, June/July 2005.
Published electronically.

49

http://en.wikipedia.org/w/index.php?title=H.323&oldid=146577248
http://en.wikipedia.org/w/index.php?title=H.323&oldid=146577248
http://en.wikipedia.org/w/index.php?title=Skinny_Client_Control_Protocol&oldid=133621770
http://en.wikipedia.org/w/index.php?title=Skinny_Client_Control_Protocol&oldid=133621770

[10] Unknown. S-tools 4.0. ftp://ftp.funet.fi/pub/crypt/mirrors/idea.
sec.dsi.unimi.it/code/s-tools4.zip, August 2006.

[11] Fabien A. P. Petitcolas. mp3stego. http://www.petitcolas.net/fabien/
steganography/mp3stego/, June 2006.

[12] Heinz Repp. Hide 4 pgp. http://www.rugeley.demon.co.uk/security/
hide4pgp.zip, December 1996.

[13] I)ruid. An analysis of voip steganography re-
search efforts. http://druid.caughq.org/papers/
An-Analysis-of-VoIP-Steganography-Research-Efforts.pdf,
September 2007.

[14] I)ruid. Real-time steganography with rtp. http://druid.caughq.org/
presentations/Real-time-Steganography-with-RTP.pdf, August 2007.

[15] Defcon 15. http://www.defcon.org/html/defcon-15/dc-15-schedule.
html, August 2007.

[16] T. Takahashi and W. Lee. An assessment of voip covert channel threats. http:
//voipcc.gtisc.gatech.edu/download/securecomm.pdf, July 2007.

[17] Wikipedia. G.711 — wikipedia, the free encyclopedia. http://
en.wikipedia.org/w/index.php?title=G.711&oldid=151887535, 2007.
[Online; accessed 6-September-2007].

[18] Wikipedia. Least significant bit — wikipedia, the free en-
cyclopedia. http://en.wikipedia.org/w/index.php?title=
Least significant bit&oldid=150766150, 2007. [Online; accessed
6-September-2007].

[19] Voip foro - codecs. http://www.voipforo.com/en/codec/codecs.php,
2007. [Online; accessed 5-September-2007].

[20] I)ruid. Steganrtp. http://sourceforge.net/projects/steganrtp/, Au-
gust 2007.

[21] D. Eastlake 3rd and P. Jones. Us secure hash algorithm 1 (sha1). RFC 3174,
Internet Society (IETF), September 2001.

[22] X. Wang, Y.L. Yin, and H. Yu. Finding collisions in the full SHA-1. Advances
in Cryptology–CRYPTO, 3621:17–36, 2005.

[23] I)ruid. libfindrtp. http://sourceforge.net/projects/libfindrtp/,
February 2007.

[24] Netfilter. http://www.netfilter.org/, 2007. [Online; accessed 6-
September-2007].

50

ftp://ftp.funet.fi/pub/crypt/mirrors/idea.sec.dsi.unimi.it/code/s-tools4.zip
ftp://ftp.funet.fi/pub/crypt/mirrors/idea.sec.dsi.unimi.it/code/s-tools4.zip
http://www.petitcolas.net/fabien/steganography/mp3stego/
http://www.petitcolas.net/fabien/steganography/mp3stego/
http://www.rugeley.demon.co.uk/security/hide4pgp.zip
http://www.rugeley.demon.co.uk/security/hide4pgp.zip
http://druid.caughq.org/papers/An-Analysis-of-VoIP-Steganography-Research-Efforts.pdf
http://druid.caughq.org/papers/An-Analysis-of-VoIP-Steganography-Research-Efforts.pdf
http://druid.caughq.org/presentations/Real-time-Steganography-with-RTP.pdf
http://druid.caughq.org/presentations/Real-time-Steganography-with-RTP.pdf
http://www.defcon.org/html/defcon-15/dc-15-schedule.html
http://www.defcon.org/html/defcon-15/dc-15-schedule.html
http://voipcc.gtisc.gatech.edu/download/securecomm.pdf
http://voipcc.gtisc.gatech.edu/download/securecomm.pdf
http://en.wikipedia.org/w/index.php?title=G.711&oldid=151887535
http://en.wikipedia.org/w/index.php?title=G.711&oldid=151887535
http://en.wikipedia.org/w/index.php?title=Least_significant_bit&oldid=150766150
http://en.wikipedia.org/w/index.php?title=Least_significant_bit&oldid=150766150
http://www.voipforo.com/en/codec/codecs.php
http://sourceforge.net/projects/steganrtp/
http://sourceforge.net/projects/libfindrtp/
http://www.netfilter.org/

[25] Wikipedia. Type-length-value — wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Type-length-value&oldid=
128880452, 2007. [Online; accessed 3-September-2007].

[26] Bob Jenkins. Netfilter. http://www.burtleburtle.net/bob/c/lookup3.c,
May 2006. [Online; accessed 6-September-2007].

[27] Wikipedia. Exclusive or — wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=Exclusive or&oldid=152332544,
2007. [Online; accessed 5-September-2007].

[28] Wikipedia. Forward error correction — wikipedia, the free encyclopedia, 2007.
[Online; accessed 10-September-2007].

51

http://en.wikipedia.org/w/index.php?title=Type-length-value&oldid=128880452
http://en.wikipedia.org/w/index.php?title=Type-length-value&oldid=128880452
http://en.wikipedia.org/w/index.php?title=Type-length-value&oldid=128880452
http://www.burtleburtle.net/bob/c/lookup3.c
http://en.wikipedia.org/w/index.php?title=Exclusive_or&oldid=152332544
http://en.wikipedia.org/w/index.php?title=Exclusive_or&oldid=152332544

	Introduction
	Overview
	Voice over IP
	Real-time Transport Protocol
	Steganography
	Terminology
	Digitally Embedding

	Steganography With Audio
	Previous Research

	Real-time Steganography
	Context Terminology
	RTP Payload Redundant Bits
	Audio Word Size
	Common VoIP Audio Codecs
	G.711 (alaw/ulaw)

	Identified Problems and Challenges
	Unreliable Transport
	Cover-Medium Size Limitations
	Latency
	Tracking of RTP Streams
	Raw vs. Compressed Audio
	Media Gateway Audio Modifications
	Mid-session Audio Codec Change

	Reference Implementation: SteganRTP
	Design Goals
	Achieve Steganography
	Full-Duplex Communications Channel
	Compensate for Unreliable Transport
	Identical User Experience Regardless of Mode of Operation
	Multi-type Data Transfer

	Operational Architecture
	Local Operation
	Man-in-the-Middle Operation
	Mixed Operation

	Application Flow
	Initialization
	RTP Session Identification
	Hooking Packets
	Reading Packets
	Inbound Processing
	Outbound Processing
	Session Timeout

	Communication Protocol Specification
	The cover medium: RTP Packet
	Message Format
	Message Types

	Functional Components
	File Descriptor Lists
	Message Handler
	Encryption System
	Embedding System
	Extraction System
	Outbound Data Polling System
	Message Caching System
	Shell Service

	Use
	Command-line
	User Interface

	Solutions to Problems and Challenges
	Unreliable Transport
	Cover-Medium Size Limitations
	Latency
	Inbound Packet Processing
	Outbound Packet Processing
	Encryption Overhead

	Tracking of RTP Streams
	Media Gateway Audio Modifications
	Audio Codec Conversion

	Mid-session Audio Codec Change

	Conclusion
	Design Goals
	Identified Challenges
	Secure Real-time Transfer Protocol
	Future Research

