
Context-keyed Payload Encoding
Preventing Payload Disclosure via Context

October, 2007

I)ruid, C2ISSP
<druid@caughq.org>

http://druid.caughq.org



Abstract

A common goal of payload encoders is to evade a third-
party detection mechanism which is actively observing
attack traffic somewhere along the route from an at-
tacker to their target, filtering on commonly used pay-
load instructions. More often than not however, use
of a payload encoder is easily detected itself and ei-
ther blocked or the payload decoded for further analysis.
Even so-called keyed encoders utilize easily observable,
recoverable, or guessable key values in their encoding
algorithm, thus making decoding on-the-fly trivial once
the encoding algorithm is identified. It is feasible that an
active observer may exploit the inherent functionality of
the decoder stub to decode the payload of a suspected
exploit in order to inspect the contents of that payload
and make a control decision about the network traffic.
This paper presents a new method of keying an encoder
which is based entirely on contextual information that is
predictable or known about the target by the attacker
and constructible or recoverable by the decoder stub
when executed at the target. An active observer of the
attack traffic however should be unable to decode the
payload due to lack of the contextual keying informa-
tion.

1 Introduction

In the art of vulnerability exploitation there are often nu-
merous hurdles to success. Among barriers to travers-
ing the attack vector and challenges with developing an
effective vulnerability exploitation technique, many hur-
dles to success are directly relative to the exploit pay-
load, traditionally referred to as shellcode. The payload
is the functional exploit component that implements the
exploit’s purpose[1].

One barrier to successful exploitation may be that in-
cluding certain byte values in the payload will not al-
low the payload to reach it’s destination in an exe-
cutable form[2], or even at all. Another hurdle to over-
come may be that an in-line network security monitor-
ing device such as an Intrusion Prevention System (IPS)

could be filtering network traffic for the particular pay-
load that the exploit intends to deliver[3, 288–289], or
otherwise extracting the payload for further automated
analysis[4][5, 2]. Whatever the hurdle may be, many
challenges relating to the payload portion of the exploit
can be overcome by employing what is known as a pay-
load encoder.

1.1 Payload Encoders

Payload encoders provide the utility of obfuscating the
exploit’s payload while it is in transit. Once the payload
has reached it’s target, the payload is decoded prior to
execution on the target system. This allows for the
payload to bypass various controls and restrictions of
the type mentioned previously while still remaining in an
executable form. In general, an exploit’s payload will be
encoded prior to packaging in the exploit itself and what
is known as a decoder stub will be prepended to the
encoded payload which results in a new, slightly larger
payload. This new payload is then packaged within the
exploit in favor of the original.

1.1.1 Encoder

The encoder can take many forms and provide it’s func-
tion in a number of different ways. At it’s most basic
definition, it is simply a function used when packaging a
payload for use by an exploit which encodes the payload
into a different form than the original. There are many
different encoders available today, some of which pro-
vide encoding such as alphanumeric mixed-case text[6],
Unicode safe mix-cased text[7], UTF-8 and tolower()
safe[2], and XOR against a 4-byte key[8]. There is also
an extremely impressive polymorphic XOR additive feed-
back encoder available called Shikata Ga Nai[9].

1.1.2 Decoder Stub

The decoder stub is a small chunk of instructions that
is prepended to the encoded payload. When this new
payload is executed on the target system, the decoder

1



stub executes first and is responsible for decoding the
original payload data. Once the original payload data
is decoded, the decoder stub passes execution to the
original payload. Decoder stubs generally perform a re-
versal of the encoding function, or in the case of an
XOR obfuscation encoding, simply perform the XOR
again against the same key value.

1.1.3 Example: Metasploit Alpha2 Alphanu-
meric Mixedcase Encoder (x86)

The Metasploit[10] Alpha2 Alphanumeric Mixedcase
Encoder[6] encodes payloads as alphanumeric mixed-
case text using SkyLined’s Alpha2 encoding suite. This
allows a payload encoded with this encoder to traverse
such attack vectors as may require input to pass text
validation functions such as the C89 standard functions
isalnum() and isprint(), as well as the C99 standard
function isascii().

1.1.4 Keyed Encoders

Many encoders utilize encoding techniques which re-
quire a key value. The Call+4 Dword XOR encoder[8]
and the Shikata Ga Nai polymorphic XOR additive feed-
back encoder[9] are examples of keyed encoders.

Key Selection

Encoders which make use of key data during their en-
coding process have traditionally used either random
static data chosen at the time of encoding, or data rel-
ative to the encoding process itself[11], such as the in-
dex value of the current position in the buffer being
operated on, or a value relative to that index.

Example: Metasploit Single-byte XOR Countdown En-
coder (x86)

The Metasploit Single-byte XOR Countdown
Encoder[11] uses the length of the remaining payload
to be operated upon as a position-dependent encoder
key. The benefit that this provides is a smaller decoder
stub, as the decoder stub does not need to contain any
static keying information. Instead, it tracks the length

property of the payload as it decodes and uses that
information as the key.

Weaknesses

The most significant weakness of most keyed encoders
available today is that the keying information used is
either observable directly or constructable from the ob-
served decoder stub. Either the static key information
is transmitted within the exploit as part of the decoder
stub itself, or the key information is reproducible once
the encoding algorithm is known. Knowledge of the
encoding algorithm is usually obtainable by recogniz-
ing known decoder stubs or analyzing unknown decoder
stubs instructions in detail.

The expected inherent functionality of the decoder stub
also introduces a weakness. Modern payload encoders
rely upon the decoder stub’s ability to properly decode
the payload at run-time. It is feasible that an active ob-
server may exploit this inherent functionality to decode
a suspected payload within a sandbox environment in
real-time[5, 3] in order to inspect the contents of the
payload and make a control decision about the network
traffic it was found in. Because the decoder stub re-
quires only that it is being executed by a processor that
will understand it’s instruction-set, producing such a
sandbox is trivial.

Unfortunately, all of the aforementioned keyed encoders
include the static key value directly in their decoder
stubs and are thus vulnerable to the weaknesses de-
scribed here. This allows an observer of the encoded
payload in transit to potentially decode the payload
and inspect it’s content. Fortunately, all of the keyed
encoders previously mentioned could potentially be im-
proved to use contextual keying as is described in the
following chapter.

2 Contextual Keying

Contextual keying is defined as the process of key se-
lection from context information that is either known
or predictable about the target. A context-key is de-
fined as the result of that process. The context infor-

2



mation available about the exploit’s target may contain
any number of various types of information, dependent
upon the attacker’s proximity to the target, knowledge
of the target’s operation or internals, or knowledge of
the target’s environment.

2.1 Encoder

When utilizing a context-key, the method of encoding
is largely unchanged from current methods. The exploit
crafter simply passes the encoding function the context-
key as it’s static key value. The size of the context-key is
dependent upon the requirements of the encoder being
used, however it is feasible that the key may be of any
fixed length, or ideally the same size as the payload
being encoded.

2.2 Decoder Stub

The decoder stub that requires a context-key is not only
responsible for decoding the encoded payload, but is
also responsible for retrieving or otherwise generating
it’s context-key from the information that is available
to it at run-time. This may include retrieving a value
from a known memory address, performing some calcu-
lation on other information available to it, or any num-
ber of other possible scenarios. The following section
will explore some of the possibilities.

2.3 Application Specific Keys

2.3.1 Static Application Data

If the attacker has the convenience of reproducing the
operating environment and execution of the target ap-
plication, or even simply has access to the application’s
executable, a context-key may be chosen from infor-
mation known about the running process’s memory.
Known locations of static values such as environment
variables, global variables and constants such as ver-
sion strings, help text, or error messages, or even the
application’s instructions or linked library instructions

themselves may be chosen from as contextual keying
information.

Profiling the Application

To successfully select a context-key from a running ap-
plication’s memory, the application’s memory must first
be profiled. By polling the application’s memory space
over a period of time, ranges of memory that change can
be eliminated from the potential context-key data pool.
The primary requirement of viable data in the process’s
memory space is that it does not change over time or
between subsequent instantiations of the running appli-
cation. After profiling is complete, the resultant list of
memory addresses and static data will be referred to as
the application’s memory map.

Memory Map Creation

The basic steps to create a comprehensive memory map
of a running process are:

1. Attach to the running process.

2. Initialize the memory map with a poll of non-null
bytes in the running process’s virtual memory.

3. Wait an arbitrary amount of time.

4. Poll the process’s virtual memory again.

5. Find the differential between the contents of the
memory map and the most recent memory poll.

6. Eliminate any data that has changed between the
two from the memory map.

7. Optionally eliminate any memory ranges shorter
than your desired key length.

8. Go to step 3.

Continue the above process until changing data is no
longer being eliminated and store the resulting memory
map as a map of that instance of the target process.
Restart the application and repeat the above process,
producing a second memory map for the second instance
of the target process. Compare the two memory maps
for differences and again eliminate any data that differs.

3



Repeat this process until changing data is no longer
being eliminated.

The resulting final memory map for the process must
then be analyzed for static data that may be directly
relative to the process’s environment and may not be
consistent across processes running within different en-
vironments such as on different hosts or in different net-
works. This type of data includes network addresses and
ports, host names, operating system ”unames”, and so
forth. This type of data may also include installation
paths, user names, and other user-configurable options
during installation of the application. This type of data
does not include application version strings or other per-
tinent information which may be directly relative to the
properties of the application which contribute to the
application being vulnerable and successfully exploited.

Identifying this type of relative information to the appli-
cation’s environment will produce two distinct types of
memory map data; one type containing static applica-
tion context data, and the other type containing envi-
ronment context data. Both of these types of data can
be useful as potential context-key values, however the
former will be more portable amongst targets whereas
the latter will only be useful when selecting key values
for the actual target process that was actively profiled.
If it is undesirable, introducing instantiation of processes
being profiled on different network hosts and with dif-
ferent installation configuration options to the memory
map generation process outlined above will likely elimi-
nate the latter from the memory map entirely.

Finally, the memory maps can be trimmed of any re-
maining NULL bytes to reduce their size. The final
memory map should consist of records containing mem-
ory addresses and the string of static data which can be
found in memory at those locations.

Memory Map Creation Methods

Metasploit Framework’s msfpescan

One method to create a memory map of viable addresses
and values is to use a tool provided by the Metasploit
Framework called msfpescan. msfpescan is designed
to scan PE formatted executable files and return the re-
quested portion of the .text section of the executable.

Data found in the .text section is useful as poten-
tial context-key data as the .text section is marked
read-only when mapped into a process’s virtual mem-
ory and is therefore static and will not change. Fur-
thermore, msfpescan predicts where in the executed
process’s virtual memory these static values will be lo-
cated, thus providing both the static data values as well
as the addresses at which those values can be retrieved.

To illustrate, suppose a memory map for the Windows
System service needs to be created for exploitation of
the vulnerability described in Microsoft Security Bul-
letin MS06-040[12] by an exploit which will employ a
context-keyed payload encoder. A common DLL that
is linked into the service’s executable when compiled
can be selected as the target for msfpescan. In this
case, ws2help.dll is chosen due to it’s lack of up-
dates since August 23rd, 2001. Because this particular
DLL has remained unchanged for over six years, it’s
instructions provide a particularly consistent cache of
potential context-keys for an exploit targeting an ap-
plication linked against it anytime during the last six
years. A scan of the first 1024 bytes of ws2help.dll’s
executable instructions can be performed by executing
the following command:

msfpescan -b 0x0 -A 1024 ws2help.dll

Furthermore, msfpescan has been improved via this
research effort to render data directly as a memory
map. This improved version is currently available in
the development source tree of the Metasploit Frame-
work version 3 (trunk). A scan and dump to memory
map of ws2help.dll’s executable instructions can be
performed by executing the following command:

msfpescan --context-map context ws2help.dll

It is important to note that this method of memory
map generation is much less comprehensive than the
method previously outlined, however when targeting a
process who’s executable is relatively large and links in
a large number of libraries, profiling only the instruction
portions of the executable and library files involved may

4



provide an adequately-sized memory map for context-
key selection.

Metasploit Framework’s memdump.exe

The Metasploit Framework also provides another use-
ful tool for the profiling of a running process’s memory
called memdump.exe. memdump.exe is used to dump
the entire memory space of a running process. This tool
can be used to provide the polling step of the memory
map creation process previously outlined. By produc-
ing multiple memory dumps over a period of time, the
dumps can be compared to isolate static data.

smem-map

A tool for profiling a Linux process’s virtual memory and
creating a memory map is provided by this research ef-
fort. The smem-map tool[13] was created as a reference
implementation of the process outlined at the beginning
of this section. smem-map is a Linux command-line ap-
plication and relies on the proc filesystem as an interface
to the target process’s virtual memory.

The first time smem-map is used against a target pro-
cess, it will populate an initial memory map with all non-
null bytes currently found in the process’s virtual mem-
ory. Subsequent polls of the memory ranges that were
initially identified will eliminate data that has changed
between the memory map and the most recent poll
of the process’s memory. If the tool is stopped and
restarted and the specified memory map file exists, the
file will be reloaded as the memory map to be compared
against instead of populating an entirely new memory
map. Using this functionality, a memory map can be
refined over multiple sessions of the tool as well as mul-
tiple instantiations of the target process. A scan of a
running process’s memory can be performed by execut-
ing the following command

smem-map <PID> output.map

Context-Key Selection

Once a memory map has been created for the target
application, the encoder may select any sequential data
from any memory address within the memory map which

is both large enough to fill the desired key length as well
as does not produce any disallowed byte values in the
encoded payload as defined by restrictions to the attack
vector for the vulnerability. The decoder-stub should
then retrieve the context-key from that same memory
address when executed at the target. If the decoder
stub is developed so that it may read individual bytes
of data from different locations, the encoder may select
individual bytes from multiple addresses in the mem-
ory map. The encoder must note the memory address
or addresses at which the context-key is read from the
memory map for inclusion in the decoder stub.

Proof of Concept: Improved Shikata ga Nai

The Shikata ga Nai encoder[9], included with the
Metasploit Framework, implements a polymorphic XOR
additive feedback encoding against a four byte key. The
decoder stub prepended to a payload which has been
encoded by Shikata ga Nai is generated based on dy-
namic instruction substitution and dynamic block order-
ing. The registers used by the decoder-stub instructions
are also selected dynamically when the decoder-stub is
constructed.

Improving the original Metasploit implementation of
Shikata ga Nai to use contextual keying was fairly trivial.
Instead of randomly selecting a four byte key prior to en-
coding, a key is instead chosen from a supplied memory
map. Furthermore, when generating the decoder-stub,
the original implementation used a ”mov reg, val” in-
struction (0xb8) to move the key value directly from
it’s location in the decoder stub into the register it will
use for the XOR operation. The context-key version
instead uses a ”mov reg, [addr]” instruction (0xa1)
to retrieve the context-key from the memory location at
[addr] and store it in the same register. The update to
the Shikata ga Nai decoder stub was literally as simple
as changing one instruction, and providing that instruc-
tion with the context-key’s location address rather than
a static key value directly.

The improved version of Shikata ga Nai described here is
provided by this research effort and is currently available
in the development source tree of the Metasploit Frame-
work version 3 (trunk). It can be utilized as follows from
the Metasploit Framework Console command-line, after

5



the usual exploit and payload commands:

set ENCODER x86/shikata_ga_nai
set EnableContextEncoding 1
set ContextInformationFile <application.map>
exploit

Case Study: MS04-007 vs. Windows XP SP0

The Metasploit framework currently provides an exploit
for the vulnerability described in Microsoft Security Bul-
letin MS04-007[14]. The vulnerable application in this
case is the Microsoft ASN.1 Library.

Before any exploitation using contextual keying can take
place, the vulnerable application must be profiled. By
opening the affected library from Windows XP Service
Pack 0 in a debugger, a list of libraries that it itself
includes can be gleaned. By collecting said library DLL
files from the target vulnerable system, or an equivalent
system in the lab, msfpescan can then be used to create
a memory map:

msfpescan --context-map context \
ms04-007-dlls/*

cat context/* >> ms04-007.map

After the memory map has been created, it can be pro-
vided to Metasploit and Shikata ga Nai to encode the
payload that Metasploit will use to exploit the vulnera-
ble system:

use exploit/windows/smb/ms04-007-killbill
set PAYLOAD windows/shell_bind_tcp
set ENCODER x86/shikata_ga_nai
set EnableContextEncoding 1
set ContextInformationFile ms04-007.map
exploit

2.3.2 Event Data

Similar to the static application data approach, tran-
sient data may also be used as a context-key so long

as it persists long enough for the decoder stub to ac-
cess it. Consider the scenario of a DNS server which
is vulnerable to an overflow when parsing an incoming
host name or address look-up request. If portions of
the request are stored in memory prior to the vulnera-
bility being triggered, the data provided by the request
could potentially be used for contextual keying if it’s lo-
cation is predictable. Values such as IP addresses, port
numbers, packet sequence numbers, and so forth are all
potentially viable for use as a context-key.

2.3.3 Supplied Data

Similar to Event Data, an attacker may also be able
to supply key data for later use to the memory space of
the target application prior to exploitation. Consider the
scenario of a caching HTTP proxy that exhibits the be-
havior of keeping recently requested resources in mem-
ory for a period of time prior to flushing them to disk
for longer-term storage. If the attacker is aware of this
behavior, the potential exists for the attacker to cause
the proxy to retrieve a malicious web resource which
contains a wealth of usable context-key data. Even if
the attacker cannot predict where in memory the data
may be stored, by having control of the data that is
being stored other exploitation techniques such as egg
hunting [15, 9][16] may be used by a decoder-stub to
locate and retrieve context-key information when it’s
exact location is unknown.

2.4 Temporal Keys

The concept of a temporal address was previously in-
troduced by the paper entitled Temporal Return Ad-
dresses: Exploitation Chronomancy [17, 3]. In summary,
a temporal address is a location in memory which holds
timer data of some form. Potential types of timer data
stored at a temporal address include such data as the
system date and time, number of seconds since boot,
or a counter of some other form.

The research presented in the aforementioned paper fo-
cused on leveraging the timer data found at such ad-
dresses as the return address used for vulnerability ex-

6



ploitation. As such, the viability of the data found at
the temporal address was constrained by two properties
of the data defined as scale, and period. These two
properties dictate the window of time during which the
data found at the temporal address will equate to the
desired instructions. Another potential constraint for
use of a temporal address as an exploit return address
stems from the fact that the value contained at the tem-
poral address is called directly for use as an executable
instruction. If the memory range it is contained within
is marked as non-executable such as with the more re-
cent versions of Windows[17, 19], attempting use in this
manner will cause an exception.

For the purpose that temporal addresses will be em-
ployed here, such strict constraints as those previously
mentioned do not exist. Rather, the only desired prop-
erty of the data stored at the temporal address which
will be used as a context-key is that it does not change,
or as in the case of temporal data, does not change dur-
ing the time window in which we intend to use it. Due to
this difference in requirements, the actual content of the
temporal address is somewhat irrelevant and therefore
isn’t constrained to a time-window in either the future
or the past during which the data found at the tem-
poral address will be fit for purpose. The viable time-
window in the case of use for contextual keying is en-
tirely constrained by duration rather than location along
the time-line. Due to the values at different byte offsets
within data found at a temporal address having differ-
ing update frequencies, selection of key data from these
various values produces varying duration time-windows
during which the values will remain constant. By us-
ing single byte, dual byte, or otherwise relatively short
context-keys, and carefully selecting from the available
byte values stored within the timer found at the tempo-
ral address, the viable time-window chosen can be made
to be quite lengthy.

2.4.1 Context-Key Selection

Provided by the previously mentioned temporal re-
turn address research effort is a very useful tool called
telescope[17, 8]. The tool’s function is to analyze
a running process’s memory for potential temporal ad-

dresses and report them to the user. By using this tool,
potential context-key values and the addresses at which
they reside can be respectively predicted and identified.

The temporal return addresses paper also revealed a sec-
tion of memory that is mapped into all processes running
on Windows NT, or any other more recent Windows sys-
tem, called SharedUserData[17, 17]. The interesting
properties of the SharedUserData region of a process’s
memory is that it is always mapped into memory at a
predictable location and is required to be backwards
compatible with previous versions. As such, the indi-
vidual values contained within the region will always be
at the same offset to it’s predictable base address. One
of the values contained within this region of memory is
the system time, which will be used in the examples to
follow.

Remotely Determining Time

Methods and techniques for profiling a target system’s
current time is outside of the scope of this paper,
however the aforementioned paper on temporal return
addresses[17, 13–15] offers some insight. Once a tar-
get system’s current time has been identified, the values
found at various temporal addresses in memory can be
readily predicted to varying degrees of accuracy.

Time-Window Selection

It is important to note that when using data stored at
a temporal address as a context-key, parts of that value
are likely to be changing frequently. Fortunately, the
key length being used may not require use of the en-
tire timer value, and as such the values found at the
byte offsets that are frequently changing can likely be
ignored. Consider the SystemTime value from the Win-
dows SharedUserData region of memory. SystemTime
is a 100 nanosecond timer which is measured from Jan-
uary 1st, 1961, is stored as a KSYSTEM TIME structure,
and is located at memory address 0x7ffe0014 on all
versions of Windows NT[17, 16]:

0:000> dt _KSYSTEM_TIME
+0x000 LowPart : Uint4B
+0x004 High1Time : Int4B
+0x008 High2Time : Int4B

7



Due to this timer’s frequent update period, granularity,
and scale, some of the data contained at the temporal
address will be too transient for use as a context-key.
The capacity of SystemTime is twelve bytes, however
due to the four bytes labeled as High2Time having an
identical value as the four bytes labeled as High1Time,
only the first eight bytes are relevant as a timer. As
shown by the calculations provided by the temporal re-
turn addresses paper[17, 10], reproduced below as Fig-
ure 1, it is only worth focusing on values beginning
at byte index four of the SystemTime value, or the
four bytes labeled as High1Time located at address
0x7ffe0018.

Byte Seconds (ext)
0 0 (zero)
1 0 (zero)
2 0 (zero)
3 1 (1 sec)
4 429 (7 mins 9 secs)
5 109951 (1 day 6 hours 32 mins)
6 28147497 (325 days 18 hours)
7 7205759403 (228 years 179 days)

Figure 1: 8 byte 100ns per-byte duration in seconds

It is also interesting to note that if the payload encoder
only utilizes a single byte context-key, it may not even be
required that the attacker determine the target system’s
time, as the value at byte index six or seven of the
SystemTime value could be used requiring only that
the attacker guess the system time to within a little less
than a year, or to within 228 years, respectively.

3 Weaknesses

Due to the cryptographically weak properties of using
functions such as XOR to obfuscate data, there exist
well known attacks against these methods and their key-
ing information. Although payload encoders which em-
ploy XOR as their obfuscation algorithm have been dis-
cussed extensively throughout this paper, it is not the
Author’s intent to tie the the contextual keying tech-

nique presented here to such algorithms. Rather, con-
textual keying could just as readily be used with crypto-
graphically strong encoding algorithms as well. As such,
attacks against the encoding algorithm used, or specif-
ically against the XOR algorithm, are outside the scope
of this paper and will not be detailed herein.

4 Conclusion

While the use of context-keyed payload encoders likely
won’t prevent a dedicated forensic analyst from success-
fully performing an off-line analysis of an exploit’s en-
coded payload, the system it was targeting, and the tar-
get application in an attempt to discover the key value
used, use of the contextual keying technique will pre-
vent an automated system from decoding the payload
in real-time if it does not have access to, or an auto-
mated method of constructing, an adequate memory
map of the target from which to retrieve the key.

As systems hardware technology and software capability
continue to improve, network security and monitoring
systems will likely begin to join the few currently existing
systems[5, 2–4][4] that attempt to perform this type of
real-time analysis of suspected network exploit traffic,
and more specifically, exploit payloads.

4.1 Acknowledgments

The Author would like to thank H.D. Moore and Matt
Miller a.k.a. skape for their assistance in development of
the improved Metasploit implementation of the Shikata
ga Nai payload encoder as Proof of Concept as well as
the supporting tools provided by this research effort.

8



References

[1] Ivan Arce. The shellcode generation. IEEE Security
& Privacy, 2(5):72–76, 2004.

[2] skape. Implementing a custom x86 encoder. Un-
informed Journal, 5(3), September 2006.

[3] Jack Koziol, David Litchfield, Dave Aitel, Chris
Anley, Sinan Eren, Neel Mehta, and Riley Hassell.
The Shellcoder’s Handbook: Discovering and Ex-
ploiting Security Holes. John Wiley & Sons, 2004.

[4] Paul Baecher and Markus Koetter. libemu. http:
//libemu.mwcollect.org/, 2007.

[5] R. Smith, A. Prigden, B. Thomason, and
V. Shmatikov. Shellshock: Luring malware into
virtual honeypots by emulated response. October
2005.

[6] SkyLined and Pusscat. Alpha2 alphanu-
meric mixedcase encoder (x86). http:
//framework.metasploit.com/encoders/
view/?refname=x86:alpha mixed.

[7] SkyLined and Pusscat. Alpha2 alphanumeric
unicode mixedcase encoder (x86). http:
//framework.metasploit.com/encoders/
view/?refname=x86:unicode mixed.

[8] H.D. Moore and spoonm. Call+4 dword xor en-
coder (x86). http://framework.metasploit.
com/encoders/view/?refname=x86:
call4 dword xor.

[9] spoonm. Polymorphic xor additive feedback en-
coder (x86). http://framework.metasploit.
com/encoders/view/?refname=x86:
shikata ga nai.

[10] The Metasploit Staff. The Metasploit Framework
3.0. The Metasploit Project, August 2006.

[11] vlad902. Single-byte xor countdown encoder
(x86). http://framework.metasploit.com/
encoders/view/?refname=x86:countdown.

[12] Microsoft. Microsoft security bulletin ms06-
040. http://www.microsoft.com/technet/
security/bulletin/ms06-040.mspx, August
2006.

[13] I)ruid. smem-map - the static memory map-
per. https://sourceforge.net/projects/
smem-map/.

[14] Microsoft. Microsoft security bulletin ms04-
007. http://www.microsoft.com/technet/
security/bulletin/MS04-007.mspx, February
2004.

[15] The Metasploit Staff. Metasploit 3.0 Developer’s
Guide. The Metasploit Project, December 2005.

[16] skape. Safely searching process vritual address
space. http://hick.org/code/skape/papers/
egghunt-shellcode.pdf, September 2004.

[17] skape. Temporal return addresses. Uninformed
Journal, 2(2), September 2005.

[18] SweetScape Software. 010 editor. http://www.
sweetscape.com/010editor/, 2002.

[19] I)ruid. Memorymap.bt. http://druid.caughq.
org/src/MemoryMap.bt, 2007.

9

http://libemu.mwcollect.org/
http://libemu.mwcollect.org/
http://framework.metasploit.com/encoders/view/?refname=x86:alpha_mixed
http://framework.metasploit.com/encoders/view/?refname=x86:alpha_mixed
http://framework.metasploit.com/encoders/view/?refname=x86:alpha_mixed
http://framework.metasploit.com/encoders/view/?refname=x86:unicode_mixed
http://framework.metasploit.com/encoders/view/?refname=x86:unicode_mixed
http://framework.metasploit.com/encoders/view/?refname=x86:unicode_mixed
http://framework.metasploit.com/encoders/view/?refname=x86:call4_dword_xor
http://framework.metasploit.com/encoders/view/?refname=x86:call4_dword_xor
http://framework.metasploit.com/encoders/view/?refname=x86:call4_dword_xor
http://framework.metasploit.com/encoders/view/?refname=x86:shikata_ga_nai
http://framework.metasploit.com/encoders/view/?refname=x86:shikata_ga_nai
http://framework.metasploit.com/encoders/view/?refname=x86:shikata_ga_nai
http://framework.metasploit.com/encoders/view/?refname=x86:countdown
http://framework.metasploit.com/encoders/view/?refname=x86:countdown
http://www.microsoft.com/technet/security/bulletin/ms06-040.mspx
http://www.microsoft.com/technet/security/bulletin/ms06-040.mspx
https://sourceforge.net/projects/smem-map/
https://sourceforge.net/projects/smem-map/
http://www.microsoft.com/technet/security/bulletin/MS04-007.mspx
http://www.microsoft.com/technet/security/bulletin/MS04-007.mspx
http://hick.org/code/skape/papers/egghunt-shellcode.pdf
http://hick.org/code/skape/papers/egghunt-shellcode.pdf
http://www.sweetscape.com/010editor/
http://www.sweetscape.com/010editor/
http://druid.caughq.org/src/MemoryMap.bt
http://druid.caughq.org/src/MemoryMap.bt


A Memory Map File Specifica-
tion

The memory map files created by this research effort’s
supporting tools adhere to the file format specification
described here. The file format is designed specifically
to be simple, light weight, and versatile.

A.1 File Format

An entire memory map file is comprised of individual
data records concatenated together. These individual
data records represent a chunk of data found in a pro-
cess’s memory space. This simple format allows for
multiple memory map files to be further concatenated
to produce a single larger memory map file. Individual
data records are comprised of the following elements:

Bit-Size Byte-Order Element
8 n/a Data Type
32 big-endian Base Address
32 big-endian Size

Size n/a Data

Figure 2: Memory Map Data Record Elements

A.2 Data Type Values

The Data Type values are currently defined in the fol-
lowing table:

Value Type
0 Reserved
1 Static Data
2 Temporal Data
3 Environment Data

Figure 3: Memory Map Data Types

A.3 File Parsing

Parsing of a memory map file is as simple as beginning
with the first byte in the file, reading the first three
elements of the data record as they are of fixed size, then
using the last of those three elements as size indicator
to read the final element. If any data remains in the
file, there is at least one more data record to be read.

To provide for easy parsing and review of memory map
files, an 010 Editor[18] template is provided[19] by this
research effort.

10


	Introduction
	Payload Encoders
	Encoder
	Decoder Stub
	Example: Metasploit Alpha2 Alphanumeric Mixedcase Encoder (x86)
	Keyed Encoders


	Contextual Keying
	Encoder
	Decoder Stub
	Application Specific Keys
	Static Application Data
	Event Data
	Supplied Data

	Temporal Keys
	Context-Key Selection


	Weaknesses
	Conclusion
	Acknowledgments

	Appendices
	Memory Map File Specification
	File Format
	Data Type Values
	File Parsing


